A Good Evaluation Based on Confusion Matrix for Lung Diseases Classification using Convolutional Neural Networks

Izza Putri Kamila, Christy Atika Sari, Eko Hari Rachmawanto, Nur Ryan Dwi Cahyo

Abstract


CNN has been widely used to detect a pattern with image classification. This study used CNN to perform a classification analysis of lung abnormality detection on chest X-ray images. The dataset consists of 5,732 2D images with dimensions of 200 x 200 x 1 divided into training data (85%) and testing data (15%). The preprocessing process includes image resizing, enhancement to increase contrast and reduce image complexity, and filtering to improve visibility and reduce noise. CNN is used to classify imagery into three categories, Normal (no abnormalities), Pneumonia, and Tuberculosis. The results showed a good level of accuracy, with an average accuracy of 97.24% in 3 trainings, and a 100% success rate in 6 classification experiments. This research provides insights into the detection of lung disorders and encourages further exploration in medical diagnosis.

Keywords


Pneumonia; Tuberculosis; TBC; CNN; Image Classification

Full Text:

PDF

References


H. H. Hussain, N. T. Ibraheem, N. K. F. Al-Rubaey, M. M. Radhi, N. K. K. Hindi, and R. H. K. AL-Jubori, “A review of airborne contaminated microorganisms associated with human diseases,” Medical Journal of Babylon, vol. 19, no. 2. Wolters Kluwer Medknow Publications, pp. 115–122, Apr. 01, 2022. doi: 10.4103/MJBL.MJBL_20_22.

P. J. Shermila, A. D. Anusha, Akila. M, and Abirami. S, “Pneumonia Detection from X- Ray Images using Convolutional Neural Networks,” in 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), IEEE, Apr. 2023, pp. 1–7. doi: 10.1109/ICONSTEM56934.2023.10142295.

R. Gopalaswamy, S. Shanmugam, R. Mondal, and S. Subbian, “Of tuberculosis and non-tuberculous mycobacterial infections - A comparative analysis of epidemiology, diagnosis and treatment,” Journal of Biomedical Science, vol. 27, no. 1. BioMed Central, Jun. 17, 2020. doi: 10.1186/s12929-020-00667-6.

A. R. Hawas, H. A. El-Khobby, M. Abd-Elnaby, and F. E. Abd El-Samie, “Gait identification by convolutional neural networks and optical flow,” Multimed Tools Appl, vol. 78, no. 18, pp. 25873–25888, Sep. 2019, doi: 10.1007/s11042-019-7638-9.

K. Alomar, H. I. Aysel, and X. Cai, “Data Augmentation in Classification and Segmentation: A Survey and New Strategies,” J Imaging, vol. 9, no. 2, Feb. 2023, doi: 10.3390/jimaging9020046.

H. Gm, M. Kumar Gourisaria, S. S. Rautaray, and M. Pandey, “PNEUMONIA DETECTION USING CNN THROUGH CHEST X-RAY,” 2021.

Abdulfattah E. Ba Alawi, Amer Al-basser, Amer Sallam, Amr Al-sabaeei, and Hesham Al-khateeb, “Convolutional Neural Networks Model for Screening Tuberculosis Disease,” IEEE, pp. 1–5, Apr. 2021, doi: 10.1109/ICTSA52017.2021.9406520.

M. Siddiq, “ML-BASED MEDICAL IMAGE ANALYSIS FOR ANOMALY DETECTION IN CT SCANS, X-RAYS, AND MRIS.” [Online]. Available: http://devotion.greenvest.co.id

R. Jain et al., “Chest X-Ray as the First Pointer in Various Skeletal Dysplasia and Related Disorders,” Indographics, vol. 01, no. 02, pp. 196–207, Dec. 2022, doi: 10.1055/s-0042-1759845.

“Chest X-Ray ,” Kaggle. Accessed: Oct. 07, 2023. [Online]. Available: https://www.kaggle.com/datasets/jtiptj/chest-xray-pneumoniacovid19tuberculosis/data

T. Rahman et al., “Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images,” Comput Biol Med, vol. 132, May 2021, doi: 10.1016/j.compbiomed.2021.104319.

K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91–99, Jun. 2022, doi: 10.1016/j.gltp.2022.04.020.

N. R. D. Cahyo, C. A. Sari, E. H. Rachmawanto, C. Jatmoko, R. R. A. Al-Jawry, and M. A. Alkhafaji, “A Comparison of Multi Class Support Vector Machine vs Deep Convolutional Neural Network for Brain Tumor Classification,” in 2023 International Seminar on Application for Technology of Information and Communication (iSemantic), IEEE, Sep. 2023, pp. 358–363. doi: 10.1109/iSemantic59612.2023.10295336.

D. Bhatt et al., “Cnn variants for computer vision: History, architecture, application, challenges and future scope,” Electronics (Switzerland), vol. 10, no. 20. MDPI, Oct. 01, 2021. doi: 10.3390/electronics10202470.

E. Saralioglu and O. Gungor, “Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network,” Geocarto Int, vol. 37, no. 2, pp. 657–677, Jan. 2022, doi: 10.1080/10106049.2020.1734871.

H. Gholamalinezhad and H. Khosravi, “Pooling Methods in Deep Neural Networks, a Review,” Sep. 2020.

N. Akhtar and U. Ragavendran, “Interpretation of intelligence in CNN-pooling processes: a methodological survey,” Neural Comput Appl, vol. 32, no. 3, pp. 879–898, Feb. 2020, doi: 10.1007/s00521-019-04296-5.

S. R. D. V. P. S. M. S.H. Shabbeer Basha, “Impact of fully connected layers on performance of convolutional neural networks for image classification,” IEEE, vol. 378, pp. 112–119, 2020, Accessed: Oct. 22, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231219313803

Z. Zhu, H. Wei, G. Hu, Y. Li, G. Qi, and N. Mazur, “A Novel Fast Single Image Dehazing Algorithm Based on Artificial Multiexposure Image Fusion,” IEEE Trans Instrum Meas, vol. 70, pp. 1–23, 2021, doi: 10.1109/TIM.2020.3024335.

D. S. V. J. G. Chicco, “The Benefits of the Matthews Correlation Coefficient (MCC) Over the Diagnostic Odds Ratio (DOR) in Binary Classification Assessment,” IEEE Access, vol. 9, pp. 47112–47124, 2021, Accessed: Oct. 17, 2023. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9385097&isnumber=9312710

C. Cao, D. Chicco, and M. M. Hoffman, “The MCC-F1 curve: a performance evaluation technique for binary classification,” Jun. 2020.




DOI: https://doi.org/10.26877/asset.v6i1.17330

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SLOT GACOR
https://kampus.lol/halowir/
https://vokasi.unpad.ac.id/gacor/?ABKISGOD=INFINI88 https://vokasi.unpad.ac.id/gacor/?ABKISGOD=FREECHIPS https://vokasi.unpad.ac.id/gacor/?ABKISGOD=DATAHK https://vokasi.unpad.ac.id/gacor/?ABKISGOD=TOTO+4D

https://build.president.ac.id/

https://build.president.ac.id/modules/

https://build.president.ac.id/views/

https://yudisium.ft.unmul.ac.id/pages/

https://yudisium.ft.unmul.ac.id/products/

https://yudisium.ft.unmul.ac.id/data/

https://ssstik.temanku.okukab.go.id/

https://snaptik.temanku.okukab.go.id/

https://jendralamen168.dinsos.banggaikab.go.id/gacor/

https://dinsos.dinsos.banggaikab.go.id/

https://kema.unpad.ac.id/wp-content/bet200/

https://kema.unpad.ac.id/wp-content/spulsa/

https://kema.unpad.ac.id/wp-content/stai/

https://kema.unpad.ac.id/wp-content/stoto/

Advance Sustainable Science, Engineering and Technology (ASSET)

E-ISSN: 2715-4211
Published by Science and Technology Research Centre

Universitas PGRI Semarang, Indonesia

Website: http://journal.upgris.ac.id/index.php/asset/index 
Email: asset@upgris.ac.id