Perbandingan Tingkat Akurasi Prediksi Peningkatan Kasus Positif Covid-19 antara Metode Neural Network Backpropagation dan Long Short Term Memory (LSTM)

Agus Alwi Mashuri, Eko Riyanto

Abstract


The COVID-19 (Coronavirus) pandemic is likely to be one of the most serious globalproblems in the past year. Countries do not have similar experiences with the spreadof the virus and its effects from various fields. Estimating the number of previous casesof COVID-19 can help make decisions in the form of actions and plans to prevent thevirus. This study aims to provide a forecasting model that predicts confirmed COVID-19 cases in the city of Semarang. This study applies a machine learning algorithm,namely the Recurrent Neural Network (RNN) to predict COVID-19 cases in the city ofSemarang. The process of fine-tuning each model is described in this study andnumerical comparisons between the two models are concluded using differentevaluation measures; mean sequence error (MSE).


Keywords


Covid19, LTSM,RNN,MSE,Predicition

Full Text:

PDF

References


F. Siskus and D. Arianto, “PREDIKSI KASUS COVID-19 DI INDONESIA MENGGUNAKAN METODE BACKPROPAGATION DAN FUZZY TSUKAMOTO,†Jurnal Teknologi Informasi, vol. 4, no. 1, 2020.

A. Satyo, “Seminar Nasional Teknologi Informasi dan Komunikasi-2020 PREDIKSI JANGKA PANJANG COVID-19 INDONESIA MENGGUNAKAN DEEP LEARNING LONG-TERM PREDICTION FOR COVID-19 INDONESIA USING DEEP... OPTIMALISASI DATA TERBATAS PREDIKSI JANGKA PANJANG COVID-19 DENGAN KOMBINASI LSTM DAN GRU View project LONG-TERM PREDICTION FOR COVID-19 INDONESIA USING DEEP LEARNING View project.†[Online]. Available: https://www.researchgate.net/publication/363040768

P. D. Pakan, “PERAMALAN KASUS POSITIF COVID 19 DI INDONESIA MENGGUNAKAN LSTMâ€, [Online]. Available: https://www.who.int/docs/default-

A. Cahyaningsih, N. Prasetya Putra, A. Pradika Ekoputro Pratama, and R. Ramadhani, “Journal of Informatics, Information System, Software Engineering and Applications Model Prediksi Jumlah Kumulatif Kasus COVID-19 di Indonesia Menggunakan Metode Neural Network,†vol. 3, no. 1, pp. 76–083, 2020, doi: 10.20895/INISTA.V2I2.

R. Julian and M. R. Pribadi, “Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM),†Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, 2021, [Online]. Available: http://jurnal.mdp.ac.id

I. P. Sidik and R. Setiawan, “Sistem Informasi Monitoring Belajar dari Rumah pada Sekolah Menengah Berbasis Web dengan Metodologi Waterfall.†[Online]. Available: https://jurnal.itg.ac.id/

Z. Indra and L. Trisnawati, “Zul Indra, 2) Liza Trisnawati,†vol. 3, no. 1, pp. 47–57, 2018

I. Suryani and R. S. Wahono, “Penerapan Exponential Smoothing untuk Transformasi Data dalam Meningkatkan Akurasi Neural Network pada Prediksi Harga Emas,†J. Intell. Syst., vol. 1, no. 2, pp. 67–75, 2015.

L. LIDYAWATI, P. RAHMIATI, and Y. SUNARTI, “Implementasi Filter Finite Impulse Response (FIR) Window Hamming dan Blackman menggunakan DSK TMS320C6713,†ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 4, no. 1, p. 16, 2018, doi: 10.26760/elkomika.v4i1.16.

N. F. D, R. G. H, S. K. S, and T. Salsabila, “Perbandingan metode double exponential smoothing dan artificial neural network untuk meramalkan perkembangan covid-19 di Indonesia,†pp. 312–318, 2020.

D. Pratidana, “Hak cipta dan penggunaan kembali : Lisensi ini mengizinkan setiap orang untuk menggubah , memperbaiki , dan membuat ciptaan turunan bukan untuk kepentingan komersial , selama anda mencantumkan nama penulis dan melisensikancip taan turunan dengan syarat ya,†J. Exp. Psychol. Gen., vol. 136, no. 1, pp. 23–42, 2017

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,†Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,†pp. 1–9, 2014.

“Beranda | Satgas Penanganan COVID-19.†https://covid19.go.id/ (accessed Oct. 30, 2020).




DOI: https://doi.org/10.26877/jiu.v8i2.13513

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Agus Alwi Mashuri, Eko Riyanto



Jurnal informatika UPGRIS

Publisher Program Studi Informatika UPGRIS

DOI Prefix 10.26877 ISSN 2477-6645 (Online - Elektronik) 2460-4801 (Print - Cetak)

Creative Commons License

Jurnal Informatika Upgris by Program Studi Informatika UPGRIS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

mega888

pussy888

mega888

mega888

mega888

mega888

pussy888

mega888

mega888

mega888

https://www.youtube.com/@Mega888apkoriginal

https://x.com/mega888malay

https://hashnode.com/@mega888game

https://www.facebook.com/playmega888/

https://gravatar.com/mega888profile

https://medium.com/@mega888gamemalay

https://mega888png.tumblr.com/

https://www.bizmalay.com/mega-malaysia-016-211-8234

mega888

mega888

mega888 apk

mega888 ios

mega888 android

mega888 game

mega888 download

mega888 free credit

mega888 free test id

mega888 original

918kiss

pussy888

ntc33

joker123

xe88

ace333

mega888

mega888 download

mega888 ios

mega888 original

mega888 online casino

mega888 games

mega888

mega888

pussy888

918kiss

xe88

joker123

ntc33

mega888

918kiss

pussy888

joker123

xe88

ntc33

mega888

mega888 game

mega888 apk

mega888 apk

mega888

mega888

mega888 malaysia

mega888

mega888

mega888

mega888

mega888

mega888

mega888

pussy888

mega888 game

kiss918

kiss918