Perbandingan Tingkat Akurasi Prediksi Peningkatan Kasus Positif Covid-19 antara Metode Neural Network Backpropagation dan Long Short Term Memory (LSTM)

Agus Alwi Mashuri, Eko Riyanto

Abstract


The COVID-19 (Coronavirus) pandemic is likely to be one of the most serious globalproblems in the past year. Countries do not have similar experiences with the spreadof the virus and its effects from various fields. Estimating the number of previous casesof COVID-19 can help make decisions in the form of actions and plans to prevent thevirus. This study aims to provide a forecasting model that predicts confirmed COVID-19 cases in the city of Semarang. This study applies a machine learning algorithm,namely the Recurrent Neural Network (RNN) to predict COVID-19 cases in the city ofSemarang. The process of fine-tuning each model is described in this study andnumerical comparisons between the two models are concluded using differentevaluation measures; mean sequence error (MSE).


Keywords


Covid19, LTSM,RNN,MSE,Predicition

Full Text:

PDF

References


F. Siskus and D. Arianto, “PREDIKSI KASUS COVID-19 DI INDONESIA MENGGUNAKAN METODE BACKPROPAGATION DAN FUZZY TSUKAMOTO,” Jurnal Teknologi Informasi, vol. 4, no. 1, 2020.

A. Satyo, “Seminar Nasional Teknologi Informasi dan Komunikasi-2020 PREDIKSI JANGKA PANJANG COVID-19 INDONESIA MENGGUNAKAN DEEP LEARNING LONG-TERM PREDICTION FOR COVID-19 INDONESIA USING DEEP... OPTIMALISASI DATA TERBATAS PREDIKSI JANGKA PANJANG COVID-19 DENGAN KOMBINASI LSTM DAN GRU View project LONG-TERM PREDICTION FOR COVID-19 INDONESIA USING DEEP LEARNING View project.” [Online]. Available: https://www.researchgate.net/publication/363040768

P. D. Pakan, “PERAMALAN KASUS POSITIF COVID 19 DI INDONESIA MENGGUNAKAN LSTM”, [Online]. Available: https://www.who.int/docs/default-

A. Cahyaningsih, N. Prasetya Putra, A. Pradika Ekoputro Pratama, and R. Ramadhani, “Journal of Informatics, Information System, Software Engineering and Applications Model Prediksi Jumlah Kumulatif Kasus COVID-19 di Indonesia Menggunakan Metode Neural Network,” vol. 3, no. 1, pp. 76–083, 2020, doi: 10.20895/INISTA.V2I2.

R. Julian and M. R. Pribadi, “Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM),” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, 2021, [Online]. Available: http://jurnal.mdp.ac.id

I. P. Sidik and R. Setiawan, “Sistem Informasi Monitoring Belajar dari Rumah pada Sekolah Menengah Berbasis Web dengan Metodologi Waterfall.” [Online]. Available: https://jurnal.itg.ac.id/

Z. Indra and L. Trisnawati, “Zul Indra, 2) Liza Trisnawati,” vol. 3, no. 1, pp. 47–57, 2018

I. Suryani and R. S. Wahono, “Penerapan Exponential Smoothing untuk Transformasi Data dalam Meningkatkan Akurasi Neural Network pada Prediksi Harga Emas,” J. Intell. Syst., vol. 1, no. 2, pp. 67–75, 2015.

L. LIDYAWATI, P. RAHMIATI, and Y. SUNARTI, “Implementasi Filter Finite Impulse Response (FIR) Window Hamming dan Blackman menggunakan DSK TMS320C6713,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 4, no. 1, p. 16, 2018, doi: 10.26760/elkomika.v4i1.16.

N. F. D, R. G. H, S. K. S, and T. Salsabila, “Perbandingan metode double exponential smoothing dan artificial neural network untuk meramalkan perkembangan covid-19 di Indonesia,” pp. 312–318, 2020.

D. Pratidana, “Hak cipta dan penggunaan kembali : Lisensi ini mengizinkan setiap orang untuk menggubah , memperbaiki , dan membuat ciptaan turunan bukan untuk kepentingan komersial , selama anda mencantumkan nama penulis dan melisensikancip taan turunan dengan syarat ya,” J. Exp. Psychol. Gen., vol. 136, no. 1, pp. 23–42, 2017

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” pp. 1–9, 2014.

“Beranda | Satgas Penanganan COVID-19.” https://covid19.go.id/ (accessed Oct. 30, 2020).




DOI: https://doi.org/10.26877/jiu.v8i2.13513

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Agus Alwi Mashuri, Eko Riyanto



Creative Commons License
Jurnal Informatika Upgris by Program Studi Informatika UPGRIS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.