Significance of Fundamental Metrology of 3D-Printed Parts for Engineering Design: Dimensional Accuracy

Gerald Sanqui Robles, Michaela Tayag Espino, Ray Noel Medina Delda, John Ryan Cortez Dizon

Abstract


This paper discusses some basic metrology considerations when 3D printing. The importance of ensuring correct measurements is highlighted especially for practical applications.  The last part of the paper presents sample dimensional measurements of 3D-printed parts with varying sizes, infill density and layer thickness.  Different cube sizes of 10 mm3, 15 mm3, and 20 mm3 has been produced using a commercially-available 3D printer. Acrylonitrile butadiene styrene (ABS) has been used for the experiments. Important observations and insights are presented.

Keywords


3D Printing, Additive Manufacturing, Acrylonitrile Butadiene Styrene, Metrology, Dimensional Accuracy

Full Text:

PDF

References


J. R. C. Dizon, A. H. Espera, Q. Chen, and R. C. Advincula, “Mechanical characterization of 3D-printed polymers,” Addit. Manuf., vol. 20, pp. 44–67, 2018, doi: 10.1016/j.addma.2017.12.002.

R. C. A. John Ryan C. Dizon, Ciara Catherine L. Gache, Honelly Mae S. Cascolan, Lina T. Cancino, “Post-processing of 3D-printed Polymers,” Technol., 2021.

R. N. M. Delda, R. B. Basuel, R. P. Hacla, D. W. C. Martinez, J.-J. Cabibihan, and J. R. C. Dizon, “3D Printing Polymeric Materials for Robots with Embedded Systems,” Technologies, pp. 1–26, 2021, doi: https://doi.org/10.3390/technologies9040082.

L. D. Tijing, J. R. C. Dizon, and G. C. Cruz Jr., “3D-Printed Absorbers for Solar-Driven Interfacial Water Evaporation: A Mini-Review,” Adv. Sustain. Sci. Eng. Technol., vol. 3, no. 1, p. 0210103, 2021, doi: 10.26877/asset.v3i1.8367.

R. N. R. C. Advincula, J. R. C. Dizon, Q. Chen, I. Niu, J. Chung, L. Kilpatrick, “Additive manufacturing for COVID-19: devices, materials, prospects, and challenges,” MRS Commun., vol. 10, no. 3, pp. 413–427, 2020.

J. R. C. D. Jan Lloyd B. Crisostomo, “3D Printing Applications in Agriculture, Food Processing, and Environmental Protection and Monitoring,” Key Eng. Mater., vol. 913, pp. 17–25, 2022.

J. R. C. D. Emmanuel C. Macaraeg, Cristina G. Rivera, Ronnell D. Dela Rosa, “Establishment of an Academic Makerspace at the Bataan Peninsula State University: Prospects and Challenges,” Adv. Sustain. Sci. Eng. Technol., vol. 3, no. 2, pp. 0210202-01 ~ 0210202-09, 2021, doi: https://doi.org/10.26877/asset.v3i2.9655.

J. R. Diego, D. W. C. Martinez, G. S. Robles, and J. R. C. Dizon, “Development of Smartphone-Controlled Hand and Arm Exoskeleton for Persons with Disability,” Open Eng., vol. 11, no. 1, pp. 161–170, 2021.

R. A. V. Rigoberto C. Advincula, John Ryan C. Dizon, Eugene B. Caldona and J. Francis Dave C. Siacor, Reymark D. Maalihan, Alejandro H. Espera, “On the Progress of 3D-Printed Hydrogels for Tissue Engineering,” MRS Commun. (in Press., 2021.

Martinez, D. W., Espino, M. T., Cascolan, H. M., Crisostomo, J. L., & Dizon, J. R. C. (2022). A Comprehensive Review on the Application of 3D Printing in the Aerospace Industry. In Key Engineering Materials (Vol. 913, pp. 27–34). Trans Tech Publications, Ltd. https://doi.org/10.4028/p-94a9zb

Espera Jr., Alejandro; Dizon, John Ryan; Valino, Arnaldo; Advincula, Rigoberto, Advancing flexible electronics and additive manufacturing, Japanese Journal of Applied Physics, Special Issue: Flexible and Printed Electronics (ICFPE2021), 2022, https://doi.org/10.35848/1347-4065/ac621a.

J-Rynelle Raymundo Diego, Dan William C. Martinez, Gerald S. Robles, John Ryan C. Dizon, Development of Smartphone-controlled Hand and Arm Exoskeleton for Persons with One-Arm Disability (SCHAX), Open Engineering, 2021; 11:161–170.

Brian Jumaquio Tuazon, Nick Anthony V. Custodio, Rex B. Basuel, Lanz Andre Delos Reyes, John Ryan C. Dizon, 3D Printing Technology and Materials for Automotive Application: A Mini-Review, Key Engineering Materials, Vol. 913, 2022, https://doi.org/10.4028/p-26o076.

Michael B. De Leon, Ulysses B. Ante, Madelene S. Velasco, Arvin Oliver S. Ng, Joseph Alfred V. Garcia, Fred P. Liza, Rigoberto C. Advincula, John Ryan C. Dizon, 3D-Printing for Cube Satellites (CubeSats): Philippines‘ Perspectives, Engineering Innovations, Vol. 1, 2022, https://doi.org/10.4028/p-35niy3.

Eugene B. Caldona; John Ryan C. Dizon; Robert Andrew Viers; Vincent Joseph Garcia; Zane J. Smith; Rigoberto C. Advincula, Additively manufactured high performance polymeric materials and their potential use in the oil and gas industry, MRS Communications, Vol. 11, 701–715, 2021. https://doi.org/10.1557/s43579-021-00134-9.

S. S. Hitesh D. Vora, “A comprehensive review: metrology in additive manufacturing and 3D printing technology,” Prog. Addit. Manuf., vol. 5, pp. 319–353, 2020, doi: https://doi.org/10.1007/s40964-020-00142-6.

G. W. Melenka, J. S. Schofield, M. R. Dawson, and J. P. Carey, “Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer,” Rapid Prototyp. J., vol. 21, no. 5, pp. 618–627, 2015, doi: 10.1108/RPJ-09-2013-0093.

M. M. Hanon, L. Zsidai, and Q. Ma, “Accuracy investigation of 3D printed PLA with various process parameters and different colors,” Mater. Today Proc., vol. 42, pp. 3089–3096, 2021, doi: 10.1016/j.matpr.2020.12.1246.

M. N. Islam, B. Boswell, and A. Pramanik, “An investigation of dimensional accuracy of parts produced by three-dimensional printing,” Lect. Notes Eng. Comput. Sci., vol. 1 LNECS, pp. 522–525, 2013.

A. Farzadi, M. Solati-Hashjin, M. Asadi-Eydivand, and N. A. A. Osman, “Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering,” PLoS One, vol. 9, no. 9, pp. 1–14, 2014, doi: 10.1371/journal.pone.0108252.

J. Kechagias, P. Stavropoulos, A. Koutsomichalis, I. Ntintakis, and N. Vaxevanidis, “Dimensional Accuracy Optimization of Prototypes produced by PolyJet Direct 3D Printing Technology,” pp. 61–65.

K. Tiwari and S. Kumar, “Analysis of the factors affecting the dimensional accuracy of 3D printed products,” Mater. Today Proc., vol. 5, no. 9, pp. 18674–18680, 2018, doi: 10.1016/j.matpr.2018.06.213.

A. Boschetto and L. Bottini, “Accuracy prediction in fused deposition modeling,” Int. J. Adv. Manuf. Technol., vol. 73, no. 5–8, pp. 913–928, 2014, doi: 10.1007/s00170-014-5886-4.

P. Minetola and M. Galati, “A challenge for enhancing the dimensional accuracy of a low-cost 3D printer by means of self-replicated parts,” Addit. Manuf., vol. 22, no. March 2017, pp. 256–264, 2018, doi: 10.1016/j.addma.2018.05.028.

A. Boschetto and L. Bottini, “Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling,” Robot. Comput. Integr. Manuf., vol. 37, pp. 103–114, 2016, doi: 10.1016/j.rcim.2015.07.005.

J. R. C. Dizon, A. D. Valino, L. R. Souza, A. H. Espera, Q. Chen, and R. C. Advincula, “3D Printed Injection Molds Using Various 3D Printing Technologies,” Mater. Sci. Forum, vol. 1005, pp. 150–156, 2020, doi: 10.4028/www.scientific.net/msf.1005.150.

Espino, M. T., Tuazon, B. J., Robles, G. S., & Dizon, J. R. C. (2020). Application of Taguchi Methodology in Evaluating the Rockwell Hardness of SLA 3D Printed Polymers. Materials Science Forum, 1005, 166–173. https://doi.org/10.4028/www.scientific.net/msf.1005.166

J. R. C. Dizon, A. D. Valino, L. R. Souza, A. H. Espera, Q. Chen, and R. C. Advincula, “Three-dimensional-printed molds and materials for injection molding and rapid tooling applications,” MRS Commun., vol. 9, no. 4, pp. 1267–1283, 2019, doi: 10.1557/mrc.2019.147.

A. Rusli, “Fundamental Metrology: Its Significance for Scientific Awareness in Higher Education,” Appl. Mech. Mater., vol. 771, pp. 187–190, 2015, doi: 10.4028/www.scientific.net/amm.771.187.

S. S. Tyler Musgraves, Hitesh Vora, “Metrology for additive manufacturing (3D printing) technologies,” Int. J. Addit. Subtractive Mater. Manuf., vol. 2, no. 1, 2018.

A. M. Badadhe, Metrology and Quality Control. Technical Publications, 2006.

M. Ali, “Measuring Accuracy of Two 3D Printing Materials,” Bowling Green State University, 2016.

O. S. Carneiro, A. F. Silva, and R. Gomes, “Fused deposition modeling with polypropylene,” Mater. Des., vol. 83, pp. 768–776, 2015, doi: 10.1016/j.matdes.2015.06.053.

M. Mahesh, Y. S. Wong, J. Y. H. Fuh, and H. T. Loh, “Benchmarking for comparative evaluation of RP systems and processes,” Rapid Prototyp. J., vol. 10, no. 2, pp. 123–135, 2004, doi: 10.1108/13552540410526999.

T. M. Wang, J. T. Xi, and Y. Jin, “A model research for prototype warp deformation in the FDM process,” Int. J. Adv. Manuf. Technol., vol. 33, no. 11–12, pp. 1087–1096, 2007, doi: 10.1007/s00170-006-0556-9.

Tuazon, B. J., Espino, M. T., & Dizon, J. R. C. (2020). Investigation on the Effects of Acetone Vapor-Polishing to Fracture Behavior of ABS Printed Materials at Different Operating Temperature. Materials Science Forum, 1005, 141–149. https://doi.org/10.4028/www.scientific.net/msf.1005.141

M. P. N. Emil Yankov, “Comparison of the Accuracy of 3D Printed Prototypes Using the Stereolithography (SLA) Method with the Digital CAD Models,” MATEC Web Conf., vol. 137, p. 02014, 2017, doi: https://doi.org/10.1051/matecconf/201713702014.

R. M. C. L. Li, R McGuan, P. Kavehpour, “Precision enhancement of 3D printing via in situ metrology,” in Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 2018, pp. 252–260, [Online]. Available: https://repositories.lib.utexas.edu/bitstream/handle/2152/90092/2018-19-Li.pdf?sequence=2.

E. P. and N. Z.-U. J Kacmarcik, D Spahic, K Varda, “An investigation of geometrical accuracy of desktop 3D printers using CMM,” IOP Conf. Ser. Mater. Sci. Eng., vol. 393, p. 012085, 2018, doi: 10.1088/1757-899X/393/1/012085.

A. D. and K. Fiedorczuk, “Geometric accuracy of rapid prototyping technologies using laser scanner and coordinate measurement machine,” IOP Conf. Ser. Mater. Sci. Eng., vol. 770, p. 012086, 2020, doi: 10.1088/1757-899X/770/1/012086.

M. J. and F. Khameneifar, “Improving Geometric Accuracy of 3D Printed Parts Using 3D Metrology Feedback and Mesh Morphing,” J. Manuf. Mater. Process., vol. 4, no. 4, p. 112, 2020, doi: doi:10.3390/jmmp4040112.

T. T. Zhu, A. J. Bushby, and D. J. Dunstan, “Materials mechanical size effects: A review,” Mater. Technol., vol. 23, no. 4, pp. 193–209, 2008, doi: 10.1179/175355508X376843.

G. S. Robles, R. N. M. Delda, R. Lui, B. Rosario, M. T. Espino, and J. R. C. Dizon, “Dimensional Accuracy of 3D - Printed Acrylonitrile Butadiene Styrene : Effect of Size , Layer Thickness , and Infill Density,” vol. 913, pp. 17–25, 2022.




DOI: https://doi.org/10.26877/asset.v4i2.12950

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SLOT GACOR
https://kampus.lol/halowir/
https://vokasi.unpad.ac.id/gacor/?ABKISGOD=INFINI88 https://vokasi.unpad.ac.id/gacor/?ABKISGOD=FREECHIPS https://vokasi.unpad.ac.id/gacor/?ABKISGOD=DATAHK https://vokasi.unpad.ac.id/gacor/?ABKISGOD=TOTO+4D

https://build.president.ac.id/

https://build.president.ac.id/modules/

https://build.president.ac.id/views/

https://yudisium.ft.unmul.ac.id/pages/

https://yudisium.ft.unmul.ac.id/products/

https://yudisium.ft.unmul.ac.id/data/

https://ssstik.temanku.okukab.go.id/

https://snaptik.temanku.okukab.go.id/

https://jendralamen168.dinsos.banggaikab.go.id/gacor/

https://dinsos.dinsos.banggaikab.go.id/

https://kema.unpad.ac.id/wp-content/bet200/

https://kema.unpad.ac.id/wp-content/spulsa/

https://kema.unpad.ac.id/wp-content/stai/

https://kema.unpad.ac.id/wp-content/stoto/

Advance Sustainable Science, Engineering and Technology (ASSET)

E-ISSN: 2715-4211
Published by Science and Technology Research Centre

Universitas PGRI Semarang, Indonesia

Website: http://journal.upgris.ac.id/index.php/asset/index 
Email: asset@upgris.ac.id