Genome-Wide Association Study of Complex Traits in Maize Detects Genomic Regions and Genes for Increasing Grain Yield and Grain Quality

Yheni Dwiningsih, Jawaher Al-Kahtani

Abstract


This review describes the current status of genome-wide association study (GWAS) of the major crops in maize (Zea mays L.) concentrate on performing association mapping as a novel method in associating genetic and complex traits, current strategy in analyzing of phenotype and genotype data to identify population structure and linkage disequilibrium. GWAS has an important role in food security because this method identified many crucial genomic regions of important traits in the most commercialize crops of the world, such as maize. These complex traits including yield, grain quality, biofortification, biotic and abiotic resistance. GWAS has many advantages correlated with reducing genotyping cost and research time, increasing mapping resolution and larger allele number. Meanwhile, GWAS has two main limitations related to population size and the number of markers. There are many software packages for data analysis in GWAS. The most commonly software that was used in GWAS especially in this crop is TASSEL because frequently updated. Recently, many research papers concentrated on GWAS in maize. GWAS analysis accelerated identification of genetic regions, candidate genes within these genomic regions and their metabolomic analysis correlated to the complex traits in maize for increasing grain yield and grain quality to fulfill the market demands.


Keywords


complex traits; genomic regions; GWAS; maize; grain yield; grain quality

Full Text:

PDF

References


Dwiningsih Y. Molecular Genetic Analysis of Drought Resistance and Productivity Traits of Rice Genotypes; University of Arkansas: Fayetteville, AR, USA. 2020.

Atwell S., Huang Y. S., Vilhjalmsson B. J., Willems G., Horton M., Li Y., Meng D., Platt A., Tarone A. M., Hu T. T., Jiang R., Muliyati N. M., Zhang X., Amer M. A., Baxter I., Brachi B., Chory J., Dean C., Debieu M., de Meaux J., Ecker J. R., Faure N., Kniskern J. M., Jones J. D. G., Michael T., Nemri A., Roux F., Salt D. E., Tang C., Todesco M., Traw M. B., Weigel D., Marjoram P., Borevitz J. O., Bergelson J., Nordborg. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010;465(3). doi:10.1038/nature08800

Risch N., Merikangas, K. The future of genetic studies of complex human diseases. Science, 1996;273:1516-1517.

Zhu C., Gore M., Buckler E. S., Yu J. Status and Prospects of Association Mapping in Plants. The Plant Genome, 2008;1:5-20. doi:10.3835/plantgenome2008.02.0089

Yu J., Buckler E. S. Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol., 2006;17:155-160.

Yu J., Pressoir G., Briggs W. H., Bi I. V., Yamasaki M., Doebley J. F., McMullen M. D., Gaut B. S., Nielsen D. M., Holland J. B., Kresovich S., Buckler E. S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006;38:203-208.

Dwiningsih, Y. & Alkahtani, J. Genetics, Biochemistry and Biophysical Analysis of Anthocyanin in Rice (Oryza sativa L.). Advance Sustainable Science, Engineering and Technology (ASSET), 2022, 2022b, 4(1). https://doi.org/10.26877/asset.v4i1.11659

Dwiningsih Y., Kumar A., Thomas J., Ruiz C., Alkahtani J., Al-hashimi A., Pereira A. Identification of Genomic Regions Controlling Chalkiness and Grain Characteristics in a Recombinant Inbred Line Rice Population Based on High-Throughput SNP Markers. Genes, 2021;12(1690). doi:10.3390/genes12111690

Dwiningsih Y., Kumar A., Thomas J., Gupta C., Ruiz, C., Baisakh N., Pereira A. QTLs analysis and identification of candidate genes for flag leaf characteristics related to grain yield in US RIL rice population under drought conditions. American Society of Agronomy (ASA), Crop Science Society of America (CSSA), Soil Science Society of America (SSSA) International Annual Meeting, Salt Lake City, UT. 2021.

Tian F., Bradburry P. J., Brown P. J., Hung H., Sun Q., Flint-Garcia S., Rocheford T. R., McMullen M. D., Holland J. B., Buckler E. S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011;43:2. doi:10.1038/ng.746

Riedelsheimer C., Lisec J., Czedik-Eysenberg A., Sulpice R., Flis A., Grieder C., Altmann T., Stitt M., Willmitzer L., Melchinger A. E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. PNAS, 2012;109,23. doi:10.1073/pnas.1120813109

Morris G. P., Ramu P., Deshpande S. P., Hash C. T., Shah T., Upadhyaya H. D., Riera-Lizarazu O., Brown P. J., Acharya C. B., Mitchell S. E., Harriman J., Glaubitz J. C., Buckler E. S., Kresovich S. Population genomic and genomic-wide association studies of agroclimatic traits in sorghum. PNAS, 2013;110 2:453-458.

Chen W., Gao Y., Xie W., Gong L., Lu K., Wang W., et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet., 2014;46,714-721. doi:10.1038/ng.3007

Dwiningsih Y., Rahmaningsih M., & Alkahtani J. Development of single nucleotide polymorphism (SNP) markers in tropical crops. Advance Sustainable Science, Engineering and Technology (ASSET), 2020; 2020c; 2(2).

McCouch S. R., Wright M. H., Tung C., Maron L. G., McNally K. L., Fitzgerald M., Singh N., DeClerck G., Perez F. A., Korniliev P., Greenberg A. J., Naredo M. E. B., Mercado S. M. Q., Harrington S. E., Shi Y., Branchini D. A., Kuser-Falcao P. R., Leung H., Ebana K., Yano M., Eizenga G., McClung A., Mezey J. Open access resources for genome-wide association mapping in rice. Nature Communication, 2016;7:10532. doi:10.1038/ncomms10532

Yano K., Yamamoto E., Aya K., Takeuchi H., Lo P. C., Hu L., et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 2016;48,927-934. doi:10.1038/ng.3596

Zhou H., Li P., Xie W., Hussain S., Li Y., Xia D., Zhao H., Sun S., Chen J., Ye H., Hou J., Zhao D., Gao G., Zhang Q., Wang G., Lian X., Xiao J., Yu S., Li X., He Y. Genome-wide Association Analyses Reveal the Genetic Basis of Stigma Exsertion in Rice. Mol. Plant., 2017;10:634-644.

Sanchez D. L., Liu S., Ibrahim R., Blanco M., Lubberstedt. Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Science, 2018;268:30-38. doi:10.1016/j.plantsci.2017.12.004

Chen J., Zhou H., Xie W., Xia D., Gao G., Zhang Q., Wang G., Lian X., Xiao J., He Y. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnology, 2019;12:2211-2222. doi:10.1111/pbi.13134

Rashid Z., Sofi M., Harlapur S. I., Kachapur R. M., Dar Z. A., Singh P. K., Zaid P. H., Vivek B. M., Nair S. K. Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight. Scientific Reports, 2020;10. doi:10.1038/s41598-020-78928-5

Zhang G., Wang R., Ma J., Gao H., Deng L., Wang N., Wang Y., Zhang J., Li K., Zhang W., Mu F., Liu H., Wang Y. Genome-wide association studies of yield-related traits in high-latitude japonica rice. BMC Genomic Data, 2021;22(39). doi:10.1186/s12863-021-00995-y

Wu B., Ren W., Zhao L., Li Q., Sun J., Chen F., Pan Q. Genome-Wide Association Study of Root System Architecture in Maize. Genes, 2022;13:181. doi:10.3390/genes13020181

Dwiningsih, Y., Kumar, A., Thomas, J., Yingling, S., & Pereira, A. Molecular genetic analysis of drought resistance and productivity in US rice cultivars. Plant and Animal Genome XXVII Conference (January 12-16, 2019). 2019.

Wang M., Yan J., Zhao J., Song W., Zhang X., Xiao Y., Zheng Y. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Science, 2012;196:125-131.

Dwiningsih, Y., Thomas, J., Kumar, A., Gupta, C., Ruiz, C., Yingling, S., Crowley, E., & Pereira, A. Molecular genetic analysis of drought resistance and productivity mechanisms in rice. Plant and Animal Genome XXVIII Conference, January 11-15, 2020. 2020b.

Zhang Z., Ersoz E., Lai C. Q., Todhunter R. J., Tiwari H. K., Gore M. A. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010;42,355-360. doi:10.1038/ng.546

Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y., Buckler E. S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007;23:2633-2635.

SAS Institute. SAS/STAT user’s guide. Version 8 SAS Institute, Inc, Cary, NC. 1999.

Ihaka R., Gentlemen R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 1996;5:299-314.

Pritchard J. K., Stephens M., Donnelly P. Inference of population structure using multi-locus genotype data. Genetics, 2000;155:945-959.

Hardy O. J., Vekemans X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes, 2002;2:618-620.

Price A. L., Patterson N. J., Plenge R. M., Weinblatt M. E., Shadicl N. A., Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006;38(8). doi:10.1038/ng1847

Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., Maller J. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Human Genet. 2007;81:559-575.

Brachi B., Morris G. P., Borevitz J. O. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biology, 2011;12(232).

Wen Y. J., Zhang H., Ni Y. L., Huang B., Zhang J., Feng J. Y., et al. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief. Bioinform. 2018;19:700-712. doi:10.1093/ bib/bbw145

Wu T. T., Chen Y. F., Hastie T., Sobel E., Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, 2009;25:714-721. doi:10.1093/bioinformatics/btp041

Yang N., Lu Y., Yang X., Huang J., Zhou Y., Ali F., Wen W., Liu J., Li J., Yan J. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet. 2014;(10)9:004573. doi:10.1371/journal.pgen.1004573

Wang Q., Tian F., Pan Y., Buckler E. S., Zhang Z. A SUPER Powerful Method for Genome Wide Association Study. PLoS ONE, 2014;9(9):107684. doi:10.1371/ journal.pone.0107684

Lippert C., Listgarten J., Liu Y., Kadie C. M., Davidson R. I., Heckerman D. FaST linear mixed models for genome-wide association studies. Nature Methods, 2011;8833-835.

Dwiningsih Y., Kumar A., Thomas J., Ruiz C., Alkahtani J., Baisakh N., Pereira A. Quantitative trait loci and candidate gene identification for chlorophyll content in RIL rice population under drought conditions. Indonesian Journal of Natural Pigments, 2021;3(2):54-64. doi:10.33479/ijnp.2021.03.2.54

Flint-Garcia S. A., Thornsberry J. M., Buckler E. S. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 2003;54:357-374.

Harjes C. E., Rocheford T. R., Bai L., Brutnell T. P., Kandianis C. B., Sowinski S. G., Stapleton A. E., Vallabhaneni R, Williams M., Wurtzel E. T., Yan J., Buckler E. S. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 2008;319:330-333.

Andersen J. R., Schrag T., Melchinger A. E., Zein I., Lubberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor. Appl. Genet. 2005;111:206-217.

Thornsberry J. M., Goodman M. M., Doebley J., Kresovich S., Nielsen D., Buckler E. S. Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 2001;28:286-289.

Camus-Kulandaivelu L., Veyrieras J. B., Madur D., Combes V., Fourmann M., Barraud S., Dubreuil P., Gouesnard B., Manicacci D., Charcosset A. Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics, 2006;172:2449-2463.

Belo A., Zheng P., Luck S., Shen B., Meyer D. J., Li B., Tingey S., Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic levels in maize. Mol. Genet. Genomics, 2008;279:1-10. doi:10.1007/s00438007-0289-y

Jiang S., Zhang H., Ni P., Yu S., Dong H., Zhang A., Cao H., Zhang L., Ruan Y., Cui Z. Genome-Wide Association Study dissects the genetic architecture of maize husk tightness. Front. Plant Sci. 2020;11:861. doi:10.3389/fpls.2020.00861

Zheng Y., Yuan F., Huang Y., Zhao Y., Jia X., Zhu L., Guo J. Genome-wide association studies of grain quality traits in maize. Scientific reports, 2021;11(9797). doi:10.1038/s41598-021-89276-3

Kump K. L., Bradbury P. J., Wisser R. J., Buckler E. S., Belcher A. R., Oropeza-Rosas M. A., Zwonitzer J. C., Kresovich S., McMullen M. D., Ware D., Balint-Kurti P. J., Hollad J. B. Genome-wide association study of quantitative resistance to southern leaff blight in the maize nested association mapping population. Nature Genetics, 2011;43(2). doi:10.1038/ng.747

Poland J. A., Bradbury P. J., Buckler E. S., Nelson R. J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. PNAS, 2011;108(17):6893-6898. doi:10.1073/pnas.1010894108

Weng J., Xie C., Hao Z., Wang J., Liu C., Li M., Zhang D., Bai L., Zhang S., Li X. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS ONE, 2011;6(12):29229. doi:10.1371/journal.pone.0029229

Li Q., Yang X., Xu S., Cai Y., Zhang D., Han Y., Li L., Zhang Z., Gao S., Li J., Yan J. Genome-wide association studies identified three independent polymorphisms associated with a-tocopherol content in maize kernels. PLoS ONE, 2012;7(5):36807. doi:10.1371/journal.pone.0036807

Li H., Peng Z., Yang X., Wang W., Fu J., Wang J., Han Y., Chai Y., Guo T., Yang N., Liu J., Warburton M. L., Cheng Y., Hao X., Zhang P., Zhao J., Liu Y., Wang G., Li J., Yan J. Genome-wide association study dissect the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013;45(1).

Zila C. T., Samayoa F., Santiago R., Butron A., Holland J. B. A genome-wide association study reveals genes associated with fusarium ear rot resistance in a maize core diversity panel. Gene, Genomes, Genetics, 2013;3. doi:10.1534/g3.113.007328

Lipka A. E., Gore M. A., Magallanes-Lundback M., Mesberg A., Lin H., Tiede T., Chen C., Buell C. R., Buckler E. S., Rocheford T., DellaPenna D. Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain. Gene, Genomes, Genetics, 2013;3. doi:10.1534/g3.113.006148

Schaefer C. M., Bernardo R. Genomewide association mapping of flowering time, kernel composition, and disease resistance in historical minnesota maize inbreds. Crop Science, 2013;53(6):2518-2529. doi:10.2135/cropsci2013.02.0121

Xue Y., Warburton M. L., Sawkins M., Zhang X., Setter T., Xu Y., Grudloyma P., Gethi J., Ribaut J. M., Li W., Zhang X., Zheng Y., Yan J. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor App Genet. 2013. doi:10.1007/s00122-013-2158-x

Wen W., Li D., Li X., Gao Y., Li W., Li H., et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 2014;5:3438. doi:10.1038/ncomms4438

Owens B. F., Lipka A. E., Magallanes-Lundback M., Tiede T., Diepenbrock C. H., Kandianis C. B., Kim E., Cepela J., Mateous-Hernandez M., Buell R., Buckler E. S., DellaPenna D., Gore M .A., Rocheford T. A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics, 2014;198:1699-1716. doi:10.1534/genetics.114.169979

Olukolu B. A., Wang G. F., Vontimitta V., Venkata B. P., Marla S. et al. A Genome-Wide Association Study of the Maize Hypersensitive Defense Response Identifies Genes That Cluster in Related Pathways. PLoS Genet. 2014;10(8):1004562. doi:10.1371/journal.pgen.1004562

Pace J., Gardner C., Romay C., Ganapathysubramanian B., Lubberstedt. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015;16(47). doi:10.1186/s12864-015-1226-9

Gowda M., Das B., Makumbi D., Babu R., Semagn K., Mahuku G., Olsen M. S., Bright J. M., Beyene Y., Prasanna B. M. Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor Appl Genet. 2015;128:1957-1968. doi:10.1007/s00122-015-2559-0

Warburton M. L., Tang J. D., Windham G. L., Hawkins L. K., Murray S. C., Xu W., Boykin D., Perkins A., Williams W. P. Genome-wide association mapping of Aspergillus flavus and aflatoxin accumulation resistance in maize. Crop Sci. 2015;55, 1-11. doi:10.2135/cropsci2014.06.0424

Zhang N., Gibon Y., Wallace J. G., Lepak N., Li P., Dedow L., Chen C., So Y., Kremling K., Bradbury P. J., Brutnell T., Stitt M., Buckler E. S. Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population. Plant Physiology, 2015;168:575-583.

Wang X., Wang H., Liu S., Ferjani A., Li J., Yan J., Yang X., Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedling. Nature Genetics, 2016;48,10. doi:10.1038/ng.3636

Cui Z., Luo J., Qi C., Ruan Y., Li J., Zhang A., Yang X., He Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics, 2016;17,946. doi:10.1186/s12864-016-3229-6

Li K., Wang H., Hu X., Liu Z., Wu Y., Huang C. Genome-Wide Association Study Reveals the Genetic Basis of Stalk Cell Wall Components in Maize. PLoS ONE, 2016;11(8):0158906. doi:10.1371/ journal.pone.0158906

Olukolu B., Tracy W. F., Wisser R., De Vries B., Balint-Kurti P. J. A genome-wide association study for partial resistance to maize common rust. Phytopathology, 2016;106:745-751. doi:10.1094/PHYTO-11-15-0305-R

Zhang X., Warburton M. L., Setter T., Liu H., Xue Y., Yang N., Yan J., Xiao Y. Genome-wide association studies of drought-related metabolic changes in maize using an enlarge SNP panel. Theor Appl Genet. 2016;129:1449-1463. doi:10.1007/s00122-016-2716-0

Xiao Y., Liu H., Wu L., Warburton M., Yan J. Genome-wide association studies in maize: praise and stargaze. Molecular Plant, 2017;10:359-374. doi:10.1016/j.molp.2016.12.008

Zhu X. M., Shao X. Y., Pei Y. H., Guo X. M., Li J., Song X. Y., Zhao M. A. Genetic Diversity and Genome-Wide Association Study of Major Ear Quantitative Traits Using High-Density SNPs in Maize. Front. Plant Sci. 2018;9:966. doi:10.3389/fpls.2018.00966

Kuki M. C., Scapim C. A., Rossi E. S., Mangolin C. A., Amaral Ju´nior A. Td., Pinto R. J. B. Genome wide association study for gray leaf spot resistance in tropical maize core. PLoS ONE, 2018;13(6):0199539. doi:10.1371/journal.pone.0199539

Warburton M. L., Womack E. D., Tang J. D., Thrash A., Smith J. S., Xu W., Murray S. C., Williams W. P. Genome-wide association and metabolic pathway analysis of corn earworm resistance in maize. Plant Genome, 2018;11:170069. doi:10.3835/plantgenome2017.08.0069

Wang Q. J., Yuan Y., Liao Z., Jiang Y., Wang Q., Zhang L., Gao S., Wu F., Li M., Xie W., Liu T., Xu J., Liu Y., Feng X., Lu Y. Genome-wide association study of 13 traits in maize seedlings under low phosphorus stress. Plant Genome, 2019;12:190039. doi:10.3835/plantgenome2019.06.0039

Singh A., Li G., Brohammer A. B., Jarquin D., Hirsch C. N., Alfano J. R., Lorenz A. J. Genome -wide association and gene co-expression network analyses reveal complex genetics of resistance to Gross’s Wilt of Maize. Genes Genomes Genetics, 2019;9. doi:0000-0002-4361-1683

Zhou X., Huang X. Genome-wide association studies in rice: how to solve the low power problems? Mol Plant. 2019;12:10-12.

An Y., Chen L., Li Y. X., Li C., Shi Y., Zhang D., Li Y., Wang T. Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize. BMC Plant Biology, 2020;20(490). doi:10.1186/s12870-020-02676-x

Kibe M., Nair S. K., Das B., Bright J. M., Makumbi D., Kinyua J., Suresh L. M., Beyene Y., Olsen M. S., Prasanna B. M., Gowda M. Genetic Dissection of Resistance to Gray Leaf Spot by Combining Genome-Wide Association, Linkage Mapping, and Genomic Prediction in Tropical Maize Germplasm. Front. Plant Sci. 2020;11:572027. doi:10.3389/fpls.2020.572027

Lu X., Wang J., Wang Y., Wen W., Zhang Y., Du J., Zhao Y., Guo X. Genome-Wide Association Study of Maize Aboveground Dry Matter Accumulation at Seedling Stage. Front. Genet. 2021;11:571236. doi:10.3389/fgene.2020.571236

Liu L., Jiang L. G., Luo J. H., Xia A. A., Chen L. Q., He Y. Genome-wide association study reveals the genetic architecture of root hair length in maize. BMC Genomics, 2021;22:664. doi:10.1186/s12864-021-07961-z

Vinayan M. T., Seetharam K., Babu R., Zaidi P. H., Blummel M., Nair S. K. Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.). Scientific Reports, 2021;11:686. doi:10.1038/s41598-020-80118-2

Moussa A., Mandozai A., Jin Y., Qu J., Zhang Q., et al. Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stage. BMC Genomics, 2021;22,558. doi:10.1186/s12864-021-07874-x

Ge, X., Khan, Z.I., Chen, F., Akhtar, M., Ahmad, K., Ejaz, A., Ashraf, M.A., Nadeem, M., Akhtar, S., Alkahtani, J., Dwiningsih, Y., & Elshikh, M.S. A study on the contamination assessment, health risk and mobility of two heavy metals in the soil-plants-ruminants system of a typical agricultural region in the semi-arid environment. Environmental Science and Pollution Research, 2022;29,14584–14594. https://doi.org/10.1007/s11356-021-16756-4

Maqsood, A., Khan, Z.I., Ahmad, K., Akhtar, S., Ashfaq, A., Malik, I.S., Sultana, R., Nadeem, M., Alkahtani, J., Dwiningsih, Y., & Elshikh, M. Quantitative evaluation of zinc metal in meadows and ruminants for health assessment: implications for humans. Environmental Science and Pollution Research, 2022; 29, 15, 21634–21641. https://doi.org/10.1007/s11356-021-17264-1

Sitrarasi, R., Nallal, U.M., Razia, M., Chung, W.J., Shim, J., Chandrasekaran, M., Dwiningsih, Y., Rasheed, R.A., Alkahtani, J., Elshikh, M.S., Debnath, O., & Ravindran, B. Inhibition of multi-drug resistant microbial pathogens using an ecofriendly root extract of Furcraea foetida silver nanoparticles. Journal of King Saud University-Science, 2022, 34, 2, 101794. https://doi.org/10.1016/j.jksus.2021.101794

Bashir, S., Gulshan, A.B., Iqbal, J., Husain, A., Alwahibi, M.S., Alkahtani, J., Dwiningsih, Y., Bakhsh, A., Ahmed, N., Khan, M.J., Ibrahim, M., & Diao, Z-H. Comparative role of animal manure and vegetable waste induced compost for polluted soil restoration and maize growth. Saudi Journal of Biological Sciences, 2021, 28, 4, 2534-2539. https://doi.org/10.1016/j.sjbs.2021.01.057

Ali, M.H., Khan, M.I., Bashir, S., Azam, M., Naveed, M., Qadri, R., Bashir, S., Mehmood, F., Shoukat, M.A., Li, Y., Alkahtani, J., Elshikh, M.S., & Dwiningsih, Y. Biochar and Bacillus sp. MN54 Assisted Phytoremediation of Diesel and Plant Growth Promotion of Maize in Hydrocarbons Contaminated Soil. Agronomy, 2021, 11, 9, 1795. https://doi.org/10.3390/agronomy11091795




DOI: https://doi.org/10.26877/asset.v4i2.12678

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SLOT GACOR
https://kampus.lol/halowir/
https://vokasi.unpad.ac.id/gacor/?ABKISGOD=INFINI88 https://vokasi.unpad.ac.id/gacor/?ABKISGOD=FREECHIPS https://vokasi.unpad.ac.id/gacor/?ABKISGOD=DATAHK https://vokasi.unpad.ac.id/gacor/?ABKISGOD=TOTO+4D

https://build.president.ac.id/

https://build.president.ac.id/modules/

https://build.president.ac.id/views/

https://yudisium.ft.unmul.ac.id/pages/

https://yudisium.ft.unmul.ac.id/products/

https://yudisium.ft.unmul.ac.id/data/

https://ssstik.temanku.okukab.go.id/

https://snaptik.temanku.okukab.go.id/

https://jendralamen168.dinsos.banggaikab.go.id/gacor/

https://dinsos.dinsos.banggaikab.go.id/

https://kema.unpad.ac.id/wp-content/bet200/

https://kema.unpad.ac.id/wp-content/spulsa/

https://kema.unpad.ac.id/wp-content/stai/

https://kema.unpad.ac.id/wp-content/stoto/

Advance Sustainable Science, Engineering and Technology (ASSET)

E-ISSN: 2715-4211
Published by Science and Technology Research Centre

Universitas PGRI Semarang, Indonesia

Website: http://journal.upgris.ac.id/index.php/asset/index 
Email: asset@upgris.ac.id