Yogyakarta Batik Image Classification Based on Convolutional Neural Network
Abstract
This paper studies the efficiency of identifying motifs and patterns in Yogyakarta batik using the Convolutional Neural Network (CNN) algorithm. This research uses the AlexNet architecture on CNN to increase the accuracy of batik image classification. Apart from that, it also involves the use of Canny edge detection techniques and feature extraction using the Gray Level Co-occurrence Matrix (GLCM) to improve the feature extraction process in batik images. There are 6 folders representing 6 types of motifs containing -+20 to 25 data that have been prepared for the training session. Next, the data is processed with 20% of the data used for training and 80% for testing. The accuracy of this research using the SGDM optimizer reached 100%. The evaluation results provide insight into the extent to which edge emphasis can improve the model's ability to recognize and classify batik patterns. It also presents classification test results and evaluation metrics such as precision, recall, and F1 score.
Full Text:
PDFReferences
L. A. Ana, “Aplikasi Penerapan Motif Batik Kawung Pada Sepatu Kulit Boot,” pp. 72–88.
C. J. PRABOWO, “Studi Visual Dan Karakteristik Batik Glugu Di Ampel–Boyolali,” 2019.
D. Gede, T. Meranggi, N. Yudistira, and Y. A. Sari, “Batik Classification Using Convolutional Neural Network with Data Improvements,” JOIV Int. J. Informatics Vis., vol. 6, no. March, pp. 6–11, 2022.
C. U. Khasanah, E. Utami, and S. Raharjo, “Implementation of Data Augmentation Using Convolutional Neural Network for Batik Classification,” 2020 8th Int. Conf. Cyber IT Serv. Manag. CITSM 2020, pp. 20–24, 2020, doi: 10.1109/CITSM50537.2020.9268890.
I. A. Dly, S. Sanjaya, L. Handayani, and F. Yanto, “Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data,” vol. 4, no. 4, pp. 1176–1185, 2023, doi: 10.47065/josh.v4i4.3702.
V. No, K. Panggalih, W. Kurniawan, and W. Gata, “Implementasi Perbandingan Deteksi Tepi Pada Citra Digital Menggunakan Metode Roberst , Sobel , Prewitt dan Canny.,” vol. 5, no. 2, pp. 337–347, 2022.
A. Satyo, B. Karno, W. Hastomo, Y. Efendi, D. Diyah, and R. Irawati, “Arsitektur Alexnet Convolution Neural Network (CNN) Untuk Mendeteksi Covid-19 Image Chest-Xray,” Konf. Nas. Ilmu Komput., vol. 5, no. 1, pp. 482–485, 2021.
D. Riana, D. Uki Eka Saputri, and S. Hadianti, “Klasifikasi Alexnet dan Deteksi Tepi Canny untuk Identifikasi Citra Repomedunm,” J. Inf. dan Teknol., vol. 5, no. 1, pp. 191–198, 2023, doi: 10.37034/jidt.v5i1.295.
M. A. Rasyidi and T. Bariyah, “Batik Pattern Recognition Using Convolutional Neural Network (CNN),” Bull. Electr. Eng. Informatics, vol. 9, no. 4, pp. 1430–1437, 2020, doi: 10.11591/eei.v9i4.2385.
B. Falakhi, E. F. Achmal, M. Rizaldi, R. R. R. Athallah, and N. Yudistira, “Perbandingan Model AlexNet dan ResNet dalam Klasifikasi Citra Bunga Memanfaatkan Transfer Learning,” J. Ilmu Komput. dan Agri-Informatika, vol. 9, no. 1, pp. 70–78, 2022, doi: 10.29244/jika.9.1.70-78.
A. G. S. Auni, C. A. Sari, E. H. Rachmawanto, and M. Doheir, “Lovebird Image Classification Based on Convolutional Neural Network,” Lect. Notes Data Eng. Commun. Technol., vol. 93, no. 02, pp. 833–842, 2023, doi: 10.36055/tjst.v19i2.21946.
E. A. Nabila, C. A. Sari, E. H. Rachmawanto, and M. Doheir, “A Good Performance of Convolutional Neural Network Based on AlexNet in Domestic Indonesian Car Types Classification,” Adv. Sustain. Sci. Eng. Technol., vol. 5, no. 3, p. 0230302, 2023, doi: 10.26877/asset.v5i3.16854.
A. S. Dharma, M. Kom, S. Tambunan, and P. K. Naibaho, “Deteksi Objek Aksara Batak Toba Menggunakan Faster R-CNN dan YoloV3,” 2022, [Online]. Available: https://www.academia.edu/68753590/Deteksi_Objek_Aksara_Batak_Toba_Menggunakan_Faster_R_CNN_dan_YoloV3
D. Bhatt et al., “Cnn variants for computer vision: History, architecture, application, challenges and future scope,” Electron., vol. 10, no. 20, pp. 1–28, 2021, doi: 10.3390/electronics10202470.
E. G. Mohamed, R. P. D. Redondo, A. Koura, M. S. EL-Mofty, and M. Kayed, “Dental Age Estimation Using Deep Learning: A Comparative Survey,” Computation, vol. 11, no. 2, pp. 1–22, 2023, doi: 10.3390/computation11020018.
S. Rahmawati, R. Devita, R. H. Zain, E. Rianti, N. Lubis, and A. Wanto, “Prewitt and Canny Methods on Inversion Image Edge Detection: An Evaluation,” J. Phys. Conf. Ser., vol. 1933, no. 1, 2021, doi: 10.1088/1742-6596/1933/1/012039.
Z. Stosic, “An Improved Canny Edge Detection Algorithm for Detecting Brain Tumors in MRI Images,” vol. 3, 2018.
L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, “Tomato leaf segmentation algorithms for mobile phone applications using deep learning,” Comput. Electron. Agric., vol. 178, no. August, p. 105788, 2020, doi: 10.1016/j.compag.2020.105788.
E. A. Sekehravani, E. Babulak, and M. Masoodi, “Implementing canny edge detection algorithm for noisy image,” vol. 9, no. 4, pp. 1404–1410, 2020, doi: 10.11591/eei.v9i4.1837.
I. P. Kamila, C. A. Sari, E. H. Rachmawanto, and N. R. Dwi, “A Good Evaluation Based on Confusion Matrix for Lung Diseases Classification using Convolutional Neural Networks,” vol. 6, no. 1, pp. 1–8, 2024.
S. Juliansyah and A. D. Laksito, “Klasifikasi Citra Buah Pir Menggunakan Convolutional Neural Networks,” J. Telekomun. dan Komput., vol. 11, no. 1, p. 65, 2021, doi: 10.22441/incomtech.v11i1.10185.
E. Hassan, M. Y. Shams, N. A. Hikal, and S. Elmougy, The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study, vol. 82, no. 11. Multimedia Tools and Applications, 2023. doi: 10.1007/s11042-022-13820-0.
DOI: https://doi.org/10.26877/asset.v6i1.18002
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Advance Sustainable Science, Engineering and Technology (ASSET)
E-ISSN: 2715-4211
Published by Science and Technology Research Centre
Universitas PGRI Semarang, Indonesia
Website: http://journal.upgris.ac.id/index.php/asset/index
Email: asset@upgris.ac.id