The Effect of LAB Color Space with NASNetMobile Fine-tuning on Model Performance for Crowd Detection

Muhammad Rafid, Ardytha Luthfiarta, Muhammad Naufal, Muhammad Daffa Al Fahreza, Michael Indrawan

Abstract


In the COVID-19 pandemic, computer vision plays a crucial role in crowd detection, supporting crowd restriction policies to mitigate virus spread. This research focuses on analyzing the impact of using the RGB LAB color space on the performance of NASNetMobile for crowd detection. The fine-tuning process, involving freezing layers in various NASNetMobile base model variations, is considered. Results reveal that the model with LAB color space outperforms model with RGB color space, with an average accuracy of 94.68% compared to 94.15%. From all the test iterations, it was found that the highest performance for the NASNetMobile model occurred when freezing 10% of the layers from the back for both model LAB and RGB color spaces, with the LAB color space achieving an accuracy of 95.4% and the RGB color space achieving an accuracy of 95.1%.

Full Text:

PDF

References


J. Chai, H. Zeng, A. Li, and E. W. T. Ngai, “Deep learning in computer vision: A critical review of emerging techniques and application scenarios,” Machine Learning with Applications, vol. 6, p. 100134, Dec. 2021, doi: 10.1016/j.mlwa.2021.100134.

A. I. Pradana, “Deteksi Ketepatan Pengunaan Masker Wajah dengan Algoritma CNN dan Haar Cascade,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 3, pp. 2305–2316, Sep. 2022, doi: 10.35957/jatisi.v9i3.2912.

D. T. Laksono, I. N. Husna, M. Ulum, A. K. Saputro, M. F. Fahmi, and D. N. Purnamasari, “SISTEM DETEKSI DAN PERHITUNGAN JUMLAH MANUSIA DALAM RUANGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK,” Jurnal Simantec, vol. 11, no. 1, pp. 131–138, Dec. 2022, doi: 10.21107/simantec.v11i1.19745.

A. Fuadi and A. Suharso, “PERBANDINGAN ARSITEKTUR MOBILENET DAN NASNETMOBILE UNTUK KLASIFIKASI PENYAKIT PADA CITRA DAUN KENTANG,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 7, no. 3, pp. 701–710, Aug. 2022, doi: 10.29100/jipi.v7i3.3026.

M. M. Ahsan, K. D. Gupta, M. M. Islam, S. Sen, Md. L. Rahman, and M. Shakhawat Hossain, “COVID-19 Symptoms Detection Based on NasNetMobile with Explainable AI Using Various Imaging Modalities,” Mach Learn Knowl Extr, vol. 2, no. 4, pp. 490–504, Oct. 2020, doi: 10.3390/make2040027.

P. Enkvetchakul and O. Surinta, “Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition,” Applied Science and Engineering Progress, Jan. 2021, doi: 10.14416/j.asep.2021.01.003.

N. Thevarasa, G. Ananthajothy, R. Navaratnam, and M. B. Dissanayake, “Weighted Ensemble Algorithm for Aerial Imaging Based Mosquito Breeding Sites Classification,” in 2023 IEEE 17th International Conference on Industrial and Information Systems (ICIIS), IEEE, Aug. 2023, pp. 347–352. doi: 10.1109/ICIIS58898.2023.10253588.

S. N. Gowda and C. Yuan, “ColorNet: Investigating the Importance of Color Spaces for Image Classification,” 2019, pp. 581–596. doi: 10.1007/978-3-030-20870-7_36.

X. Shao et al., “Multi-Scale Feature Pyramid Network: A Heavily Occluded Pedestrian Detection Network Based on ResNet,” Sensors, vol. 21, no. 5, p. 1820, Mar. 2021, doi: 10.3390/s21051820.

S. Shao et al., “CrowdHuman: A Benchmark for Detecting Human in a Crowd,” Apr. 2018.

P. Langgeng, W. E. Putra, M. Naufal, and E. Y. Hidayat, “A Comparative Study of MobileNet Architecture Optimizer for Crowd Prediction,” Semarang 123 Jl. Imam Bonjol No, vol. 8, no. 3, p. 50131, 2023.

D. Alamsyah and D. Pratama, “Segmentasi Warna Citra Bunga Daisy dengan Algoritma K-Means pada Ruang Warna Lab,” Jurnal Buana Informatika, vol. 10, no. 2, Oct. 2019, doi:

24002/jbi.v10i2.2458.

B. Kaddar, H. Fizazi, M. Hernandez-Cabronero, V. Sanchez, and J. Serra-Sagrista, “DivNet: Efficient Convolutional Neural Network via Multilevel Hierarchical Architecture Design,” IEEE Access, vol. 9, pp. 105892–105901, 2021, doi: 10.1109/ACCESS.2021.3099952.

W. Sun, Q. Wei, L. Ren, J. Dang, and F.-F. Yin, “Adaptive respiratory signal prediction using dual multi-layer perceptron neural networks,” Phys Med Biol, vol. 65, no. 18, p. 185005, Sep. 2020, doi: 10.1088/1361-6560/abb170.

E. Belcore and V. Di Pietra, “LAYING THE FOUNDATION FOR AN ARTIFICIAL NEURAL NETWORK FOR PHOTOGRAMMETRIC RIVERINE BATHYMETRY,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-4/W1-2022, pp. 51–58, Aug. 2022, doi: 10.5194/isprs-archives-XLVIII-4-W1-2022-51-2022.

A. M. Javid, S. Das, M. Skoglund, and S. Chatterjee, “A ReLU Dense Layer to Improve the Performance of Neural Networks,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Jun. 2021, pp. 2810–2814. doi: 10.1109/ICASSP39728.2021.9414269.

C. Fang, H. He, Q. Long, and W. J. Su, “Exploring deep neural networks via layer-peeled model: Minority collapse in imbalanced training,” Proceedings of the National Academy of Sciences, vol. 118, no. 43, Oct. 2021, doi: 10.1073/pnas.2103091118.

X. Wang, H. Ren, and A. Wang, “Smish: A Novel Activation Function for Deep Learning Methods,” Electronics (Basel), vol. 11, no. 4, p. 540, Feb. 2022, doi: 10.3390/electronics11040540.




DOI: https://doi.org/10.26877/asset.v6i1.17821

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SLOT GACOR
https://kampus.lol/halowir/
https://vokasi.unpad.ac.id/gacor/?ABKISGOD=INFINI88 https://vokasi.unpad.ac.id/gacor/?ABKISGOD=FREECHIPS https://vokasi.unpad.ac.id/gacor/?ABKISGOD=DATAHK https://vokasi.unpad.ac.id/gacor/?ABKISGOD=TOTO+4D

https://build.president.ac.id/

https://build.president.ac.id/modules/

https://build.president.ac.id/views/

https://yudisium.ft.unmul.ac.id/pages/

https://yudisium.ft.unmul.ac.id/products/

https://yudisium.ft.unmul.ac.id/data/

https://ssstik.temanku.okukab.go.id/

https://snaptik.temanku.okukab.go.id/

https://jendralamen168.dinsos.banggaikab.go.id/gacor/

https://dinsos.dinsos.banggaikab.go.id/

https://kema.unpad.ac.id/wp-content/bet200/

https://kema.unpad.ac.id/wp-content/spulsa/

https://kema.unpad.ac.id/wp-content/stai/

https://kema.unpad.ac.id/wp-content/stoto/

Advance Sustainable Science, Engineering and Technology (ASSET)

E-ISSN: 2715-4211
Published by Science and Technology Research Centre

Universitas PGRI Semarang, Indonesia

Website: http://journal.upgris.ac.id/index.php/asset/index 
Email: asset@upgris.ac.id