Stroke Classification Comparison with KNN through Standardization and Normalization Techniques

Muhammad Raihan Firmansyah, Yani Parti Astuti

Abstract


This study explores the impact of z-score standardization and min-max normalization on K-Nearest Neighbors (KNN) classification for strokes. Focused on managing diverse scales in health attributes within the stroke dataset, the research aims to improve classification model accuracy and reliability. Preprocessing involves z-score standardization, min-max normalization, and no data scaling. The KNN model is trained and evaluated using various methods. Results reveal comparable performance between z-score standardization and min-max normalization, with slight variations across data split ratios. Demonstrating the importance of data scaling, both z-score and min-max achieve 95.07% accuracy. Notably, normalization averages a higher accuracy (94.25%) than standardization (94.21%), highlighting the critical role of data scaling for robust machine learning performance and informed health decisions.

Keywords


KNN; Z-Score Standardization; Min Max Normalization; Stroke Classification; Data Scaling

Full Text:

PDF

References


F. D. Telaumbanua, P. Hulu, T. Z. Nadeak, R. R. Lumbantong, and A. Dharma, “Penggunaan Machine Learning Di Bidang Kesehatan,” JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), vol. 2, no. 2, Art. no. 2, 2019, doi: 10.34012/jutikomp.v2i2.657.

A. S. Fahmy et al., “An Explainable Machine Learning Approach Reveals Prognostic Significance of Right Ventricular Dysfunction in Nonischemic Cardiomyopathy,” JACC: Cardiovascular Imaging, vol. 15, no. 5, pp. 766–779, May 2022, doi: 10.1016/j.jcmg.2021.11.029.

Mohammed Z. Al-Faiz, Ali A. Ibrahim, and Sarmad M. Hadi, “The effect of Z-Score standardization (normalization) on binary input due the speed of learning in back-propagation neural network,” Iraqi Journal of Information and Communications Technology(IJICT), vol. 1, no. 3, pp. 42–48, Feb. 2019, doi: 10.31987/IJICT.1.3.41.

Lei Huang, ie Qin, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao, “Normalization Techniques in Training DNNs: Methodology, Analysis and Application,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 8, pp. 10173–10196, Aug. 2023, doi: 10.1109/tpami.2023.3250241.

gus Ambarwari, Qadhli Jafar Adrian, and Yeni Herdiyeni, “Analysis of the Effect of Data Scaling on the Performance of the Machine Learning Algorithm for Plant Identification | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi),” JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 1, pp. 117–122, 2020, doi: https://doi.org/10.29207/resti.v4i1.1517.

D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” CESS (Journal of Computer Engineering, System and Science), vol. 4, no. 1, Art. no. 1, Jan. 2019, doi: 10.24114/cess.v4i1.11458.

Henderi, Tri Wahyuningsih, and Efana Rahwanto, “Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer,” International Journal of Informatics and Information System, vol. 4, no. 1, pp. 13–20, Mar. 2021, doi: 10.47738/IJIIS.V4I1.73.

MADISON WENZLICK, OSMAN MAMUN, RAM DEVANATHAN, KELLY ROSE, and JEFFREY HAWK, “Assessment of Outliers in Alloy Datasets Using Unsupervised Techniques,” JOM, vol. 74, no. 7, pp. 2846–2859, May 2022, doi: 10.1007/s11837-022-05204-4.

Amerah Alabrah, “An Improved CCF Detector to Handle the Problem of Class Imbalance with Outlier Normalization Using IQR Method,” in Sensors, Apr. 2023, pp. 4406–4406. doi: 10.3390/s23094406.

Shobha Aswal, Neelu Jyothi Ahuja, and Ritika Mehra, “Feature Selection Method Based on Honeybee-SMOTE for Medical Data Classification,” Informatica, vol. 46, no. 9, pp. 111–118, Feb. 2023, doi: 10.31449/inf.v46i9.4098.

Gde Agung Brahmana Suryanegara, Adiwijaya, and Mahendra Dwifebri Purbolaksono, “Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi),” JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 114–122, 2021, doi: https://doi.org/10.29207/resti.v5i1.2880.

I. Permana and F. N. S. Salisah, “Pengaruh Normalisasi Data Terhadap Performa Hasil Klasifikasi Algoritma Backpropagation: The Effect of Data Normalization on the Performance of the Classification Results of the Backpropagation Algorithm,” Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), vol. 2, no. 1, Art. no. 1, Mar. 2022, doi: 10.57152/ijirse.v2i1.311.

S. K. P. Loka and A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita: Comparison Algorithm of K-Nearest Neighbor and Naïve Bayes Classifier for Classifying Nutritional Status in Toddlers,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 1, Art. no. 1, May 2023, doi: 10.57152/malcom.v3i1.474.

R. D. Y. Prakoso, B. S. Wiriaatmadja, and F. W. Wibowo, “Sistem Klasifikasi Pada Penyakit Parkinson Dengan Menggunakan Metode K-Nearest Neighbor,” Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), vol. 1, no. 1, Art. no. 1, Feb. 2020.

Dubravka Boži ́ c, Biserka Runje, Dragutin Lisjak, and Davor Kolar, “Metrics Related to Confusion Matrix as Tools for Conformity Assessment Decisions,” Applied Sciences, vol. 13, pp. 8187–8205, Jul. 2023, doi: 10.3390/app13148187.




DOI: https://doi.org/10.26877/asset.v6i1.17685

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SLOT GACOR
https://kampus.lol/halowir/
https://vokasi.unpad.ac.id/gacor/?ABKISGOD=INFINI88 https://vokasi.unpad.ac.id/gacor/?ABKISGOD=FREECHIPS https://vokasi.unpad.ac.id/gacor/?ABKISGOD=DATAHK https://vokasi.unpad.ac.id/gacor/?ABKISGOD=TOTO+4D

https://build.president.ac.id/

https://build.president.ac.id/modules/

https://build.president.ac.id/views/

https://yudisium.ft.unmul.ac.id/pages/

https://yudisium.ft.unmul.ac.id/products/

https://yudisium.ft.unmul.ac.id/data/

https://ssstik.temanku.okukab.go.id/

https://snaptik.temanku.okukab.go.id/

https://jendralamen168.dinsos.banggaikab.go.id/gacor/

https://dinsos.dinsos.banggaikab.go.id/

https://kema.unpad.ac.id/wp-content/bet200/

https://kema.unpad.ac.id/wp-content/spulsa/

https://kema.unpad.ac.id/wp-content/stai/

https://kema.unpad.ac.id/wp-content/stoto/

Advance Sustainable Science, Engineering and Technology (ASSET)

E-ISSN: 2715-4211
Published by Science and Technology Research Centre

Universitas PGRI Semarang, Indonesia

Website: http://journal.upgris.ac.id/index.php/asset/index 
Email: asset@upgris.ac.id