Heart Disease Classification Using Deep Neural Network with SMOTE Technique for Balancing Data
Abstract
Heart disease is the leading cause of premature death worldwide. According to the WHO, heart disease causes about 30% of the total 58 million deaths and mostly occurs in individuals who are in their productive age. This condition can occur to anyone, including individuals who do not show symptoms of heart disease. However, heart disease can be prevented with early detection. By understanding the various risk factors that can increase the potential for heart disease. Therefore, this study aims to classify heart disease using Deep Neural Network algorithm and SMOTE technique to overcome data imbalance. This research resulted in a validation accuracy of 90% with precision evaluation of 0.85, recall 0.92, and f1-score 0.88. Based on the results obtained, the Deep Neural Network algorithm after SMOTE is superior to the model without SMOTE.
Keywords
Full Text:
PDFReferences
F. Novitasari, E. Haerani, A. Nazir, J. Jasril, and F. Insani, “Sistem Klasifikasi Penyakit Jantung Menggunakan Teknik Pendekatan SMOTE Pada Algoritma Modified K-Nearest Neighbor,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, pp. 274–284, Jun. 2023, doi: 10.47065/bits.v5i1.3610.
I. J. Johanis, I. A. T. Hinga, and A. B. Sir, “Faktor Risiko Hipertensi, Merokok dan Usia Terhadap Kejadian Penyakit Jantung Koroner pada Pasien di RSUD Prof. Dr. W. Z. Johannes Kupang,” Media Kesehatan Masyarakat, vol. 2, no. 1, pp. 33–40, 2020, [Online]. Available: https://ejurnal.undana.ac.id/MKM
World Health Organization., Prevention of Cardiovascular Disease : Guidelines for assessment and management of cardiovascular risk. World Health Organization, 2007.
L. Ghani, M. D. Susilawati, and H. Novriani, “Faktor Risiko Dominan Penyakit Jantung Koroner di Indonesia,” Buletin Penelitian Kesehatan, vol. 44, no. 3, pp. 153–164, Dec. 2016, doi: 10.22435/bpk.v44i3.5436.153-164.
I. Javid, A. K. Z. Alsaedi, and R. Ghazali, “Enhanced Accuracy of Heart Disease Prediction using Machine Learning and Recurrent Neural Networks Ensemble Majority Voting Method,” (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 11, no. 3, pp. 540–551, 2020, [Online]. Available: www.ijacsa.thesai.org
M. A. Aslam et al., “Deep Neural Networks for Prediction of Cardiovascualr Diseases,” Nano Biomed Eng, vol. 14, no. 1, pp. 81–89, May 2022, doi: 10.5101/nbe.v14i1.p81-89.
P. Rani, R. Kumar, and A. Jain, “An intelligent system for heart disease diagnosis using regularized deep neural network,” Journal of Applied Research and Technology, vol. 21, no. 1, pp. 87–97, Feb. 2023.
Wiharto, E. Suryani, S. Setyawan, and B. P. Putra, “The Cost-Based Feature Selection Model for Coronary Heart Disease Diagnosis System Using Deep Neural Network,” IEEE Access, vol. 10, pp. 29687–29697, Mar. 2022, doi: 10.1109/ACCESS.2022.3158752.
D. Zhang et al., “Heart Disease Prediction Based on the Embedded Feature Selection Method and Deep Neural Network,” J Healthc Eng, vol. 2021, pp. 1–9, 2021, doi: 10.1155/2021/6260022.
R. R. Sarra, A. M. Dinar, and M. A. Mohammed, “Enhanced accuracy for heart disease prediction using artificial neural network,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 29, no. 1, pp. 375–383, Jan. 2023, doi: 10.11591/ijeecs.v29.i1.pp375-383.
A. Janosi, W. Steinbrunn, M. Pfisterer, and R. Detrano, “Heart Disease,” UCI Machine Learning Repository. 1988. Accessed: Nov. 19, 2023. [Online]. Available: https://doi.org/10.24432/C52P4X.
B. T. Vasantrao, Dr. S. Rangasamy, and Dr. C. J. Shelke, “A Deep Learning Classification Approach using Feature Fusion Model for Heart Disease Diagnosis,” (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 13, no. 6, pp. 646–654, 2022.
S. Dehnavi, M. Emamipour, and A. Golabpour, “Combining random forest and neural networks algorithms to diagnose heart disease,” Frontiers in Health Informatics, vol. 9, pp. 1–6, Jun. 2020, doi: 10.30699/fhi.v9i1.214.
A. Al Shammari, H. Al Hadeaf, and H. Zardi, “Prediction of Heart Diseases (PHDs) based on Multi-Classifiers,” (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 11, no. 5, pp. 230–236, 2020, [Online]. Available: www.ijacsa.thesai.org
R. Indrakumari, T. Poongodi, and S. R. Jena, “Heart Disease Prediction using Exploratory Data Analysis,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 130–139. doi: 10.1016/j.procs.2020.06.017.
A. M. A. Rahim, I. Y. R. Pratiwi, and M. A. Fikri, “Klasifikasi Penyakit Jantung Menggunakan Metode Synthetic Minority Over-sampling Technique Dan Random Forest Clasifier,” Indonesian Journal of Computer Science, vol. 12, no. 5, pp. 2995–3011, Oct. 2023.
P. Dileep et al., “An automatic heart disease prediction using cluster-based bi-directional LSTM (C-BiLSTM) algorithm,” Neural Comput Appl, vol. 35, no. 10, pp. 7253–7266, Mar. 2023, doi: 10.1007/s00521-022-07064-0.
U. N. Oktaviana, R. Hendrawan, A. D. K. Annas, and G. W. Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, pp. 1216–1222, Dec. 2021, doi: 10.29207/resti.v5i6.3607.
V. Sapra et al., “Integrated approach using deep neural network and CBR for detecting severity of coronary artery disease,” Alexandria Engineering Journal, vol. 68, pp. 709–720, Apr. 2023, doi: 10.1016/j.aej.2023.01.029.
DOI: https://doi.org/10.26877/asset.v6i1.17521
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Advance Sustainable Science, Engineering and Technology (ASSET)
E-ISSN: 2715-4211
Published by Science and Technology Research Centre
Universitas PGRI Semarang, Indonesia
Website: http://journal.upgris.ac.id/index.php/asset/index
Email: asset@upgris.ac.id