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Abstract. Rain prediction is an important topic that continues to gain attention throughout the 

world. The rain has a big impact on various aspects of human life both socially and economically, 

for example in agriculture, health, transportation, etc. Rain also affects natural disasters such as 

landslides and floods. The various impact of rain on human life prompts us to build a model to 

understand and predict rain to provide early warning in various fields/needs such as agriculture, 

transportation, etc. This research aims to build a rain prediction model using a rule-based 

Machine Learning approach by utilizing historical meteorological data. The experiment using 

the J48 method resulted in up to 77.8% accuracy in the training model and gave accurate 

prediction results of 86% when tested against actual weather data in 2020.  
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1.  Introduction  

Rain prediction is an important topic that continues to gain attention throughout the world. The rain has 

a big impact on various aspects of human life both socially and economically, for example in agriculture, 

health, transportation, etc. Rain also affects natural disasters such as landslides and floods. So much the 

impact of rain on human life, then we need a model to understand and predict predictions to provide 

early warning in various fields/needs such as agriculture, transportation, etc. Modeling can be made 

based on historical weather data that has been recorded by meteorological stations that are scattered in 

various locations in Indonesia. This data has been provided by the Climatology, Meteorology, and 

Geophysics Agency (BMKG) to be accessed by the public for various purposes including research 

purposes. It is known that Machine Learning  / Data Mining can be used for weather prediction and 

forecasting[1][2]. This study aims to build a rain prediction model using a data mining approach by 
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utilizing historical meteorological data. 

2.  Methods 

2.1.  Research on Weather Predictions 

Several studies on weather/rain prediction have been conducted. Some studies use a statistical approach 

while others use a data mining approach. Research on weather/rain prediction with a data mining / 

statistical approach is summarized in Table 1. In weather timeseries research, there are statistical 

approaches such as ARIMA, Exponential Smoothing[3], etc and Data Mining / Machine Learning such 

as Artificial Neural Networks, etc. [4]. Some studies combine the elements of weather prediction to be 

associated with certain phenomena such as Dengue Fever [5], agriculture [6], dan foods[7]. 

 

Table 1. Research on weather/rain prediction 

  

Reference Variables Method 

[8] Temperature Fuzzy 

[9] Barometric pressure, temperature, dew point, humidity, 

wind speed 

Fuzzy 

[2] Temperature, rainfall, humidity, exposure time, duration 

of fog, evaporation, wind, atmospheric pressure, number 

of clouds 

Decision trees, bagging, 

random forests, and 

boosting 

[10] Minimum temperature, maximum temperature, rainfall Multiple Linear Regression 

[11] Temperature, air pressure, relative humidity, vapor 

pressure, wind speed 

Bayesian 

[12] Maximum humidity, average humidity, rainfall Naïve Bayes 

[13] Temperature, wind speed, wind direction, humidity, 

atmospheric pressure, rainfall 

Multiple Linear Regression 

[14] Maximum temperature, minimum temperature, 

evaporation, wind speed, cloud cover 

J48, ANN, dan Naïve Bayes 

 

2.2.  Decision Tree 

The Decision Tree (DT) model has a top-down hierarchical structure that describes the rules for dividing 

large data sets into small groups given a specific target variable. There are three distinct algorithms for 

categorical target variables in the DT model, i.e  Entropy Reduction, Gini, and Chi-square tests. 

Previously, research on weather forecasting and climate change found that models produced using DT 

have small errors compared to other techniques in predicting data mining with large historical data [15], 

[16]. 

The DT model is one of the most powerful and useful for predictions that explore large and complex 

data. The mechanism in the DT model is transparent and is produced easily to understand the model for 

researchers. Besides, the DT model can convert raw data into information in a simple way, by complying 

with a set of rules that can be read by humans. The resulting structure represents a decision or rule for 

the classification of datasets. These rules are made to make groups as homogeneous as possible in terms 

of response variables. At each step, the input variable is used to divide the observations into groups. If 

the specified input values are identified to have a strong relationship with the response values, then all 

of these values are grouped in the same branch in the decision tree. 

Trees can fit better as the grouping of observation data split into smaller groups (i.e ‘branches’). In 

this situation, the DT model will remember data patterns rather than generalize them. The pruning 

algorithm in the DT model helps overcome the problem of overfitting by pruning trees using certain 

algorithms, namely, CART, CHAID, and C4.5. CART and CHAID both use the Gini Index and Chi-

squared test, respectively, to classify records in the target variable. This research uses the C4.5 / J48 

method which uses the measure of Entropy and information gain. 
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2.3.  C4.5 / J48 Algorithm 

C4.5 is the successor of the Iterative Dichotomiser 3 (ID3) algorithm developed by the same author, 

Ross Quinlan, in 1993 [17]. This has several improvements over the original ID3 such as the ability to 

handle continuous and discrete attributes and the ability to prune trees after it is created. C4.5 works by 

creating trees based on entropy and information gain to select which attributes are useful in classifying 

the data. Entropy is a measure of the heterogeneity of data, while information-gain is a measure of how 

much information is obtained by comparing entropy before and after separating the dataset based on 

certain attributes. Formulas for entropy and information-gain are shown in (1) and (2) respectively. 

Pruning in C4.5 is based on the confidence factor. Pruning is useful for minimizing model overfitting 

and reducing tree size but in lower model accuracy costs. The well-known implementation of C4.5 is 

the J48 function which is written in Java is provided within the Waikato Environment for Knowledge 

Analysis (WEKA) software [18]. The pseudocode for the C4.5 algorithm is shown in Algorithm 1 [19]. 

J48 will produce a tree by which the rules could be easily read by humans. This J48 method has also 

been used to find rules for forest fire cases in Indonesia[20]. Research [21] also showed that a decision 

tree is very suitable for rain prediction. 
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Algorithm 1: C4.5 

Input: an attribute-valued dataset D 

1: Tree = {} 

2:  if D is ”pure” OR other stopping criteria met then  

3:  terminate 

4: end if 

5: for all attribute a ∈ D do 

6:  Compute information-theoretic criteria if we split a 

7: end for 

8: a_best=Best attribute according to above-computed criteria 

9: Tree = Create a decision node that tests a_best in the root 

10: D_v = Induced sub-datasets from D based on a_best 

11: for all D_v do  

12:   Tree v = C4.5(D_v)  

13:  Attach Tree v to the corresponding branch of Tree 

14: end for 

15: return Tree 
 

 

The research methodology is shown in Figure 1. Daily historical weather data was obtained from the 

BMKG website for the Tanjung Mas meteorological station, in Semarang City, Indonesia. The original 

data consisted of 12 attributes, but for this study, only 8 attributes were used, as shown in Table 1. The 

attribute of wind direction was not used since the numerical scale was not appropriate for this study. 

One additional attribute is added, i.e the class which shows whether it rained or not on each particular 

day. The class is obtained by evaluating the RR (rainfall) attribute column, if RR> 0 then class = ‘rain’; 

otherwise, class = ‘norain’. Data cleaning is done to remove entries with missing values. Data is then 
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stored in CSV format and then converted to the ARFF file format to be able being processed using the 

WEKA software. Experiments were carried out using the J48 function under the classification tab. The 

attributes of the meteorological data are shown in Table 2. 

 

 
 

Figure 1. Research Methodology 

 

Table 2. Attributes of the meteorological data 

Attribute Data type Description 

Tn Numeric Minimum temperature 

Tx Numeric Maximum temperature 

Tavg Numeric Average temperature 

RH_avg Numeric Average Humidity (%) 

RR Numeric Rainfall (mm) 

ss Numeric Sun exposure time (hours) 

ff_x Numeric Maximum wind speed (m/s) 

ff_avg Numeric Average wind speed (m/s) 

 

3.  Results and Discussion 

Meteorological data gathered from the year 2013 to 2019 with a total of 2536 rows of data were used in 

this experiment. Evaluation of model accuracy is done by using the 10-fold cross-validation for the 

training data and tested against actual weather data in 2020. The training model gives an accuracy of 

77.8% whereas the results of experiments against 2020 data gave an accuracy of 86%. The lower 

accuracy of the trained model might be caused by the overfitting of the model or that there is a huge 

variation in the large amount of training data being used to build the model. These findings also agree 

with another research which showed that decision trees and k-mean clustering are best-suited data 

mining techniques for weather data, with the increase in the size of the training set, the accuracy is first 

increased but then decreased after a certain limit [21]. The model also showed that the factors that predict 

rain the most are the average humidity (RH_avg), followed by the minimum temperature (Tn). The hight 

accuracy achieved by the J48 method is in line with other research which stated that the Decision Tree 

model is better as compared to the other predictive models [14]. The resulted tree which also shows the 
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rules is shown in Figure 2. The model accuracy on various minumum number of cases per leaf is shown 

in Table 3. 
 

 
Figure 2. The (simplified) decision tree produced by J48 (with minumum case of 10 per leaf) 

 

 

Table 3. The model accuracy on various number of minimum case per leaf 

 

Minimum cases per leaf Model accuracy (%) 

2 (default) 76.0 

5 76.1 

10 77.4 

20 77.7 

100 77.8 

 

4.  Conclusion 

A rain prediction model is very useful for human activities. This research attempted to build a rain 

prediction model by using a rule-based machine learning approach applied to historical meteorological 

data. The decision tree model produced by the J48 algorithm could give an accuracy up to 77.8% from 

the training data and give an accuracy of 86% when tested against actual weather data in 2020. The 

result showed that rainfall is mainly affected by the average humidity and by minimum temperature for 

a particular day of observation. This result gave us a better understanding of the phenomenon of rain 

and the model could be used for several purposes such as in agriculture, transportation, etc. 
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