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Abstract. Mangrove classification plays a pivotal role in environmental monitoring and 

conservation efforts. In this study, our meticulously curated dataset comprised diverse mangrove 

tree images standardized to 250 x 250 pixels, capturing the nuances of various species. 

Employing advanced deep learning techniques, our models demonstrated exceptional accuracy, 

reaching 99.23% without K-Folds and a slightly enhanced 99.78% with K-Folds. These models 

exhibited outstanding consistency, showcasing recall, precision, and F1-Score metrics all 

surpassing 99%. Through rigorous testing in 10 experiments, both K-Folds and non-K-Folds 

methods consistently achieved 100% accuracy, evidenced by the presence of True Positives in 

every classification scenario. This remarkable performance underscores the robustness of our 

algorithms in precisely classifying mangrove species, offering a valuable tool for ecological 

research and conservation initiatives. The practical implications of our findings are profound, 

providing an invaluable resource for environmentalists, conservationists, and policymakers 

engaged in mangrove preservation. Accurate species classification is pivotal in understanding 

biodiversity, aiding in targeted conservation efforts, and ultimately promoting the sustainable 

management of these vital coastal ecosystems. 
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1.  Introduction  

The classification of mangrove tree species based on image analysis, a field known as digital plant 

taxonomy, has become integral to ecological research, contributing significantly to biodiversity 

conservation and sustainable environmental management [1]. This process involves extracting 

meaningful information from images, enabling the identification of plant species through computational 

methods. Traditional methods of species identification, reliant on manual observation and expertise, are 

often time-consuming and prone to errors [2]. In response to these challenges, the integration of 
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advanced technologies has become imperative in the field of botanical taxonomy. With the advent of 

computer vision and machine learning, the landscape of species classification has undergone a 

transformative evolution, enabling the development of highly efficient and accurate automated 

identification systems [3].  

Contemporary technologies used for species classification primarily encompass image processing 

algorithms and machine learning models. These technologies leverage features such as leaf shape, 

texture, and color to differentiate between plant species. However, the limitations of these methods are 

apparent when dealing with intricate botanical characteristics, necessitating the exploration of more 

sophisticated approaches. One such groundbreaking technology is Convolutional Neural Networks 

(CNN), a class of deep learning algorithms specifically designed for image recognition tasks [4]. CNNs 

have demonstrated unparalleled proficiency in pattern recognition, allowing them to discern complex 

patterns within images and make highly accurate classifications [4], [5]. This methodology holds 

immense promise in revolutionizing the classification of mangrove tree species, addressing the 

limitations of traditional techniques and significantly enhancing the precision and efficiency of species 

identification efforts [6].  

In this research, the primary research objective is to investigate how these distinct features can be 

effectively utilized to differentiate between various mangrove species. Additionally, the study endeavors 

to optimize the performance of the CNN model using K-Folds cross-validation, ensuring robustness and 

minimizing overfitting.. By harnessing the capabilities of deep learning, this study aims to create a robust 

and reliable system capable of accurately identifying mangrove species based on their distinct leaf, stem, 

and seed characteristics. The utilization of CNN not only represents a significant advancement in 

botanical research but also opens new avenues for ecological studies, conservation initiatives, and 

sustainable environmental practices. Through this research, we strive to contribute to the ongoing efforts 

in preserving the invaluable biodiversity of mangrove ecosystems, emphasizing the critical role of 

cutting-edge technology in shaping the future of ecological studies and environmental conservation. 

This study will include a detailed analysis of specific cases, showcasing the effectiveness of CNN in 

resolving intricate botanical classification challenges and providing valuable insights into the 

applicability of this technology in real-world ecological contexts. The results derived from the 

fulfillment of these research objectives will be comprehensively detailed and discussed in the "Results 

and Discussion" section of the research paper. 

2.  Methods 

 

Figure 1 represent proposed workflow, the study begins by acquiring diverse datasets containing 

images of mangrove tree species with varying sizes. To ensure uniformity and consistency in the 

analysis, the images undergo a resizing process, standardizing them to a resolution of 250 x 250 pixels 

 
Figure 1. Research Methodology 
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and maintaining the RGB color channels. This step ensures that all images are of the same dimensions, 

allowing for seamless processing within the neural network. The dataset is then split into two subsets: 

80% of the data is allocated for training the Convolutional Neural Network (CNN) model, enabling it to 

learn and recognize patterns from the images, while the remaining 20% serves as validation data for 

testing the trained model's accuracy and performance. During the training phase, the CNN method is 

employed to process the training dataset, allowing the model to analyze and extract intricate features 

from the resized images. This training process involves iteratively adjusting the network's parameters to 

minimize errors and enhance accuracy. The model's performance is continuously evaluated using the 

20% validation data, which acts as a benchmark for its classification capabilities. The confusion matrix, 

a powerful tool for evaluating classification models, is utilized to assess the CNN's accuracy, providing 

a detailed breakdown of the model's predictions against the actual classes. Following the training and 

validation phases, the model is tested using the 20% validation data to assess its real-world performance. 

2.1.  Datasets 

In this study, our dataset comprised a comprehensive collection of mangrove tree images, capturing 

the diverse array of sizes and complexities inherent to different species. To ensure consistency and 

facilitate effective analysis, the images underwent meticulous resizing, all standardized to a uniform 

dimension of 250 x 250 pixels. This careful standardization process was paramount as it preserved the 

essential visual intricacies of mangrove stems, leaves, and seeds, allowing for precise computational 

analysis. The dataset, thoughtfully curated into eight distinct classes, represented a variety of mangrove 

species, including Avicennia marina (146 samples), Avicennia officinalis (149 samples), Avicennia 

rumphiana (116 samples), Rhizophora mucronata (120 samples), and Sonneratia alba (120 samples).  

Based on sample image, can be seen in Figure 2. For the purpose of this study, 80% of the total dataset, 

meticulously organized into these distinct classes, was allocated for the training phase. The remaining 

20% of the dataset was dedicated to testing and validation, serving as a robust benchmark for evaluating 

the trained CNN accuracy and performance. By segregating the dataset in this manner, we ensured a 

rigorous evaluation process, enabling us to validate the model's proficiency in classifying mangrove 

species accurately and reliably. 

2.2.  Convolutional Neural Netwrks (CNN) Classification 

CNN stand as a pioneering force in the realm of artificial intelligence, revolutionizing the field of 

image recognition and classification [7]. Rooted in deep learning, CNN are intricately designed neural 

networks inspired by the visual processing capabilities of the human brain. What distinguishes CNN 

from traditional neural networks is their ability to automatically learn and extract intricate features from 

images through convolutional layers [4]. By employing filters that slide across the input image, CNN 

 
Figure 2. (a) – (e) represents Stems, (f) – (j) represents Leaf, (k) – (o) represents seed. 
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can identify patterns such as edges, textures, and complex shapes, enabling them to comprehend visual 

data in a manner akin to human perception. This powerful methodology has found profound applications 

in diverse domains, ranging from facial recognition systems and autonomous vehicles to medical image 

analysis and natural language processing. The adaptability and accuracy of CNN have propelled them 

to the forefront of cutting-edge technology, cementing their status as a cornerstone in the evolution of 

machine learning and computer vision [4], [6].  

 

 
Figure 3. CNN Classification Layers Based on Proposed Method. 

2.3.  Confusion Matrix Evaluation 

Confusion matrix is a fundamental tool in the realm of classification tasks, offering a clear and 

comprehensive snapshot of a model's performance across multiple classes [8]. The confusion matrix [9] 

serves as a foundational step in the evaluation process, enabling data scientists and machine learning 

practitioners to gauge the efficacy of classification models and make informed decisions to enhance 

their predictive capabilities. Following the Confusion Matrix Equation, can be seen below, where, True 

Positive (TP) values lie along the diagonal, indicating correct predictions, while off-diagonal elements 

represent misclassifications. False Positive (FP) signifies instances wrongly classified as positive, and 

False Negative (FN) represents instances incorrectly labeled as negative. True Negative (TN) values 

denote correct rejections. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

2.4.  K-Folds Cross Validation Optimalization 

K-Fold Cross-Validation stands as a critical strategy for refining the performance of CNN [10]. With 

the challenge of classifying five distinct mangrove species, employing K-Fold Cross-Validation 

becomes indispensable. This technique involves dividing the dataset into k subsets and iteratively 

training the CNN on 𝐾 − 1 folds while validating on the remaining fold. By systematically cycling 

through the data, each subset is used for both training and validation, ensuring a comprehensive 

assessment of the model's ability to discern intricate features specific to each mangrove class [11]. The 

iterative nature of K-Fold Cross-Validation minimizes the risk of overfitting and provides a more 

accurate estimation of the CNN's performance across diverse instances of mangrove species [12]. This 
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rigorous validation methodology not only optimizes the network's architecture and hyperparameters but 

also fosters a model that exhibits robustness and reliability in classifying the intricate variations within 

the mangrove ecosystem. Through K-Fold Cross-Validation, CNN-based mangrove classification 

achieves a level of precision essential for ecological studies and biodiversity conservation efforts [13]. 

For example, when employing K-Fold Cross-Validation with 𝐾 = 5, the dataset is divided into five 

subsets, enabling the Convolutional Neural Network to be trained and validated iteratively on distinct 

portions of the data, ensuring a robust evaluation of its performance. Figure 4 represents new flow with 

previous study with addition of K-Folds Cross Validation Optimization parameters. K-Folds cross-

validation technique was employed with a value of K set at 5. This means that the dataset, which 

consisted of approximately 3200 iterations in the pre-processing phase of the Convolutional Neural 

Network (CNN), was divided into five subsets or folds. The training and validation process was then 

repeated five times, each time utilizing a different subset as the validation data and the remaining four 

subsets for training. This approach effectively resulted in 5 iterations, with each iteration serving as both 

the validation and training set once. The purpose of this meticulous division was to ensure 

comprehensive model assessment and avoid biases that might arise from a singular split of the data. The 

choice to employ K-Folds cross-validation over other techniques stems from its ability to address the 

crucial concern of overfitting in machine learning models. Overfitting occurs when a model learns the 

training data too well, capturing noise and irrelevant patterns instead of generalizing to new, unseen 

data. K-Folds cross-validation mitigates this risk by rigorously evaluating the model's performance 

across multiple subsets of the data [14].  

3.  Results and Discussion 

Based on the proposed method, the results and discussion are intricately intertwined with the two 

algorithmic approaches described below. The first algorithm, employing an 80-20 training-validation 

split, utilized a neural network architecture with convolutional layers, batch normalization, ReLU 

activation, and max-pooling, culminating in a multi-class classification model. The second approach 

focused on the analysis of specific performance metrics such as accuracy, precision, and recall through 

confusion matrix evaluation. Notably, the intricate interplay between these algorithms illuminates the 

nuanced intricacies of the proposed methodology, showcasing its robustness in handling complex 

classification tasks. Based on the pseudocode algorithm provided in Table 1, an evaluation graph has 

been generated, reflecting the precision and performance of the designed model. This graph, as depicted 

in the image below, illustrates the progress of both loss and accuracy throughout the training process. 

The graph becomes a valuable window, allowing an in-depth understanding and assessment of the 

model's convergence. The Graph can be seen below. In Figures 5, the generated graphs led to the 

production of the following confusion matrix. This matrix encapsulates the classification outcomes, 

providing a clear and detailed overview of the model's performance in categorizing various mangrove 

 
Figure 4. Addition of K-Folds Cross Validation Optimization parameters 
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species. The values within the confusion matrix serve as a quantitative reflection of the model's accuracy 

and effectiveness, essential for a comprehensive evaluation of its classification capabilities. The results 

of confusion matrix evaluation, can be seen in Table 2. 

 

Table 1. Pseudocode Algorithm Based on Proposed Method 
CNN With and Without K-Folds 

Initialize the training data split ratio:  𝑛𝑢𝑚𝑇𝑟𝑎𝑖𝑛𝐹𝑖𝑙𝑒𝑠 =  0.80 

Split the dataset into training and validation sets using splitEachLabel function (Without K-Folds): 

[𝑖𝑚𝑑𝑠𝑇𝑟𝑎𝑖𝑛, 𝑖𝑚𝑑𝑠𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛]  =  𝑠𝑝𝑙𝑖𝑡𝐸𝑎𝑐ℎ𝐿𝑎𝑏𝑒𝑙(𝑖𝑚𝑑𝑠, 𝑛𝑢𝑚𝑇𝑟𝑎𝑖𝑛𝐹𝑖𝑙𝑒𝑠, ′𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒′) 

Split the dataset into training and validation sets using splitEachLabel function (With K-Folds): 

[𝑖𝑚𝑑𝑠𝑇𝑟𝑎𝑖𝑛, 𝑖𝑚𝑑𝑠𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛]  =  𝑠𝑝𝑙𝑖𝑡𝐸𝑎𝑐ℎ𝐿𝑎𝑏𝑒𝑙(𝑖𝑚𝑑𝑠, 𝑛𝑢𝑚𝑇𝑟𝑎𝑖𝑛𝐹𝑖𝑙𝑒𝑠, ′𝐾𝑓𝑜𝑙𝑑′, 5) 

Input layer: imageInputLayer with size [250 250 3] 
Convolutional layers: 

• 2D Convolutional layer with 8 𝑓𝑖𝑙𝑡𝑒𝑟𝑠, 3𝑥3 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒, 𝑎𝑛𝑑 𝑃′ 𝑎𝑑𝑑𝑖𝑛𝑔′ set to 1 

• Batch normalization layer 

• ReLU activation layer 

• 2D Max-pooling layer with  2𝑥2 𝑝𝑜𝑜𝑙 𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝑆′ 𝑡𝑟𝑖𝑑𝑒′ set to 2 

• Repeat the above convolutional block with 16 𝑎𝑛𝑑 32 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 respectively 

• Fully connected layer with 5 𝑜𝑢𝑡𝑝𝑢𝑡 nodes 

• Softmax layer for classification 

• Classification layer 

Define training options: 

• Use stochastic gradient descent with momentum (𝑠𝑔𝑑𝑚)𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 

• Set GPU as the execution environment 

• Maximum number of epochs: 3 

• Mini-batch size: 32 

• Validation data: 𝑖𝑚𝑑𝑠𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 

• Validation frequency: 𝑒𝑣𝑒𝑟𝑦 5 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

• Disable verbose mode during training 

Confusion Matrix Evaluation 

  
(a) Training and Loss Progress without K-Folds (b) Training and Loss Progress with K-Folds 

Figure 5. Training and Loss Progres with and without K-Folds 

 

Table 2. Confusion Matrix Evaluation 

Evaluation Without K-Folds  With K-Folds 

Accuracy 99,23% 99,78% 

Recall 99,13% 99,17% 

Precision 100% 100% 

F1-Score 99,56% 99,58% 
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Table 3. Classification Testing with and without K-Folds 

Input Image 

Classification Testing Without K-Folds Classification Testing With K-Folds 

Actual 

Class 

Predicted 

Class 
Result 

Actual 

Class 

Predicted 

Class 
Result 

Avicennia 

Marina1.jpg 

Avicennia 

Marina 

Avicennia 

Marina 

TP Avicennia 

Marina 

Avicennia 

Marina 

TP 

Avicennia 

Marina32.jpg 

Avicennia 

Marina 

Avicennia 

Marina 

TP Avicennia 

Marina 

Avicennia 

Marina 

TP 

Avicennia 

Officinalis2.jpg 

Avicennia 

Officinalis 

Avicennia 

Officinalis 

TP Avicennia 

Officinalis 

Avicennia 

Officinalis 

TP 

Avicennia 

Officinalis48.jpg 

Avicennia 

Officinalis 

Avicennia 

Officinalis 

TP Avicennia 

Officinalis 

Avicennia 

Officinalis 

TP 

Avicennia 

Rumphiana3.jpg 

Avicennia 

Rumphiana 

Avicennia 

Rumphiana 

TP Avicennia 

Rumphiana 

Avicennia 

Rumphiana 

TP 

Avicennia 

Rumphiana66.jpg 

Avicennia 

Rumphiana 

Avicennia 

Rumphiana 

TP Avicennia 

Rumphiana 

Avicennia 

Rumphiana 

TP 

Rhizophora 

Mucronata4.jpg 

Rhizophora 

Mucronata 

Rhizophora 

Mucronata 

TP Rhizophora 

Mucronata 

Rhizophora 

Mucronata 

TP 

Rhizophora 

Mucronata6.jpg 

Rhizophora 

Mucronata 

Rhizophora 

Mucronata 

TP Rhizophora 

Mucronata 

Rhizophora 

Mucronata 

TP 

Sonneratia 

Alba7.jpg 

Sonneratia 

Alba 

Sonneratia 

Alba 

TP Sonneratia 

Alba 

Sonneratia 

Alba 

TP 

Sonneratia 

Alba21.jpg 

Sonneratia 

Alba 

Sonneratia 

Alba 

TP Sonneratia 

Alba 

Sonneratia 

Alba 

TP 

 

For future research, an intriguing avenue to explore would be integrating image segmentation 

techniques to identify specific regions within whole mangrove ecosystems. This segmentation approach 

could distinguish between different mangrove species, such as Mangrove A or Mangrove B, within a 

single image. By employing advanced image analysis methods, researchers can delve deeper into the 

intricate structures and ecological patterns of various mangrove species, enhancing our understanding 

of their distinct characteristics and contributions to the ecosystem.  

4.  Conclusion 

In conclusion, the evaluation results depicted in Table 2 demonstrate exceptional performance for 

both models, with an accuracy of 99.23% for the approach without K-Folds and a slightly improved 

accuracy of 99.78% for the K-Folds methodology. Notably, both models exhibited remarkable 

consistency across key metrics, showcasing high recall, precision, and F1-Score, all exceeding 99%. 

Analyzing the detailed classification outcomes in Table 3, it is evident that in all 10 experiments 

(testing), both the K-Folds and non-K-Folds approaches consistently achieved 100% success rates. This 

is evidenced by the presence of True Positives (TP) exclusively in the "Result" column for each 

classification scenario, signifying accurate predictions for every mangrove species tested. This 

outstanding achievement underscores the robustness of the models, regardless of the utilization of K-

Folds. Therefore, the application of both methods yielded flawless results, reaffirming the effectiveness 

of the developed algorithms in precisely classifying mangrove species within the dataset. Furthermore, 

the robustness of the developed algorithms ensures their efficacy in real-time field applications, enabling 

scientists, researchers, and conservationists to make informed decisions for the preservation and 

restoration of mangrove ecosystems worldwide. The successful application of these models underscores 
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their potential to revolutionize how we understand and protect delicate ecological environments, making 

a tangible impact on the preservation of biodiversity and the overall health of our planet. 
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