Klasifikasi Infertilitas (Ketidaksuburan) pada Wanita menggunakan Algoritma Naïve Bayes
Abstract
The presence of a baby is a dream for every married couple, especially for those who have long married However, not all married couples can get biological offspring easily, it is caused by the presence of infertility (infertility). Infertility is problems with the reproductive system characterized by failure to get pregnant after 12 months or more of being married and having sex at least 2-3 times a week regularly regularly without using contraception. Based on the WHO report, globally it is estimated that There are cases of infertility in 8-10% of couples, which is about 50 million to 80 million couples. The aim of this research is to use the Nave Bayes algorithm for the classification of infertility in children women can help public knowledge, especially married couples to detect early infertility that makes it difficult to get offspring, considering infertility in women is a case that is no less important than other health problems. The evaluation and validation process uses rapidminer for the classification of infertility in children women with the algorithm used, namely nave Bayes, has very high accuracy high with an accuracy value of 91.67%. Based on the results of the classification of infertility in women with the nave Bayes algorithm can help the community to detect early perform a medical examination.
Keywords
Full Text:
PDFReferences
HIFERI,Konsensus Penanganan Infertilitas. Himpunan Endokrinologi Reproduksi dan fertilitas Indonesia,2013.
Hairil Kurniadi Siradjuddin Penerapan Algoritma Naïve Bayes Untuk Memprediksi Tingkat Kualitas Kesuburan (Fertility) 2018
Gede Agus Irawan,Prediksi Kesuburan (Fertility) Dengan Menggunakan Principal Component Analysis Dan Klasifikasi Naive Bayes,2017
Adhien Nur Latifah, Faktor-faktor yang berhubungan dengan perubahan siklus menstruasi pada mahasiswi semester II diploma IV bidan pendidik universitas ‘aisyiyah Yogyakarta,2017.
Anastasia Oktarina,Faktor-faktor yang Mempengaruhi Infertilitas pada Wanita di Klinik Fertilitas Endokrinologi Reproduksi,2014.
Ika Indarwati,dkk,Analysis of Factors Influencing Female Infertility,2017
Aji Prasetya Wibawa, Metode-metode Klasifikasi,2018.
Andini Saraswati,Infertility,2015
M. Azman Maricar, Perbandingan Akurasi Naïve Bayes dan K-Nearest Neighbor pada Klasifikasi untuk Meramalkan Status Pekerjaan Alumni ITB STIKOM Bali
E. Prasetyo, Data Mining: Konsep dan Aplikasi menggunakan Matlab, 1 ed. Yogyakarta: Andi Offset, 2012.
Irma Hamdayani Pasaribu, Faktor- Faktor Yang Mempengaruhi Infertilitas Pada Wanita Di Rumah Sakit Dewi Sri Karawang,2019
Sugiyono. (2016). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta
UCI (University of California, Irvine),2013.
DOI: https://doi.org/10.26877/jiu.v8i1.11914
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Hastuti R Dalai
Jurnal Informatika Upgris by Program Studi Informatika UPGRIS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.