PREDIKSI SENTIMEN MASYARAKAT TERHADAP PENGGUNAAN VAKSIN COVID 19 MENGGUNAKAN RNN

dwi puji prabowo, Ricardus anggi pramunendar, Rama Aria Megantara

Abstract


Memahami sentimen dari opini publik terkait vaksin COVID-19 merupakan tantangan untuk meningkatkan penerimaan vaksin di masyarakat. Analisis sentimen telah memberikan banyak manfaat termasuk di bidang kesehatan. Analisis Sentimen dapat membantu memberikan gambaran yang dirasakan dan dipikirkan oleh para penerima vaksin. RNN merupakan salah satu metode deep learning yang sering diterapkan untuk penelitian analisis sentimen. RNN dengan arsitekur LSTM telah terbukti unggul dibandingkan metode deep learning lainnya dalam menyelesaikan tugas analisis sentimen. Penelitian ini mengusulkan model RNN-LSTM yang menerapkan arsitektur Bidirectional Layer (Bi-LSTM) agar penyerapan informasi kontekstual data lebih optimal karena data input diproses secara forward dan backward. Serta menambahkan mekanisme variational dropout pada layer LSTM untuk mendapatkan model yang optimal dan terhindar dari overfitting. Namun, keberhasilan dan keoptimalan model deep learning sangat bergantung pada ukuran dataset, jenis tugas dan penentuan parameternya. Dalam penelitian ini eksperimen terhadap nilai parameter arsitektur model dilakukan untuk mendapatkan model yang optimal dalam melakukan analisis sentimen opini publik terkait Vaksin COVID-19. Sehingga parameter terbaik didapatkan untuk model Bi-LSTM ini yaitu seperti berikut: maxlen =50, embedding size= 300, recurrent unit = 50, variational dropout = 0.25, optimizer Nadam, dan epoch = 100. Hasil evaluasi menunjukkan model BI-LSTM ini mampu melakukan analisis sentimen terhadap opini publik terkait vaksin COVID-19 ke dalam tiga kelas sentimen (positif, netral dan negatif) dengan baik dan mendapatkan akurasi sebesar 89.15% dengan rata-rata presisi 88%, recall 89% dan F1-score 88.43%


Keywords


Analisis Sentimen, Bi-LSTM, Vaksin COVID-19

Full Text:

PDF

References


S. Makkl, “Vaksinasi Covid Tahap Ketiga Dimulai, Lansia Tetap Prioritas,” CNN Indonesia, Jakarta, 2021.

Iskandar, “Jokowi Disuntik Vaksin Covid-19 Jadi Trending Topic di Twitter,” Liputan6, 2021.

E. Breck and C. Cardie, “Oxford Handbooks Online: Opinion Mining and Sentiment Analysis,” in The Oxford Handbook of Computational Linguistics 2nd edition, Oxford University Press, 2017, pp. 1–30

V. Raghupathi, J. Ren, and W. Raghupathi, “Studying Public Perception about Vaccination : A Sentiment Analysis of Tweets,” Environ. Res. Public Heal., vol. 17, no. 3464, pp. 1–23, 2020.

S. Yadav, A. Ekbal, S. Saha, and P. Bhattacharyya, “Medical Sentiment Analysis using Social Media : Towards building a Patient Assisted System,”pp. 2790–2797.

N. C. Dang, M. N. Moreno-García, and F. De la Prieta, “Sentiment analysis based on deep learning: A comparative study,” Electron., vol. 9, no. 483, 2020, doi: 10.3390/electronics9030483.

D. Li and J. Qian, “Text Sentiment Analysis Based on Long Short-Term Memory,” pp. 471–475, 2016.

M. A. Nurrohmat and A. SN, “Sentiment Analysis of Novel Review Using Long Short-Term Memory Method,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 3, p. 209, 2019, doi: 10.22146/ijccs.41236.

W. C. A. Nugroho, I. N. N. Suryadiputra, B. H. Saharjo, and L. Siboro, Panduan Pengendalian Kebakaran Hutan dan Lahan Gambut. 2005

A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep learning architectures: a review,” Artif. Intell. Rev., vol. 53, no. 6, pp. 4335–4385, 2019, doi: 10.1007/s10462-019-09794-5.

P. D. Purnamasari and M. Taqiyuddin, “Performance Comparison of Text-based Sentiment Analysis using Recurrent Neural Network and Convolutional Neural Network.”

G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, “Sentiment Analysis of Comment Texts based on BiLSTM,” vol. XX, no. c, 2019, doi: 10.1109/ACCESS.2019.2909919.

Mike Schuster and K. K. Paliwal, “Bidirectional Recurrent Neural Networks,” IEEE Trans. SIGNAL Process., vol. 45, no. 11, pp. 2673–2681, 1997

S. Hochreiter and J. Schmidhuber, “LSTM can solve hard long time lag problems,” Adv. Neural Inf. Process. Syst., pp. 473–479, 1997.

Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout in recurrent neural networks,” Adv. Neural Inf. Process. Syst., pp. 1027– 1035, 2016.




DOI: https://doi.org/10.26877/jiu.v8i1.11599

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 dwi puji prabowo, Ricardus anggi pramunendar, Rama Aria Megantara



Creative Commons License
Jurnal Informatika Upgris by Program Studi Informatika UPGRIS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.