ESTIMASI CELAH ENERGI DAN INDEKS BIAS SEMIKONDUKTOR SENG OKSIDA BERDASARKAN SPEKTRUM ABSORBSI ULTRAVIOLET-CAHAYA TAMPAK
Abstract
Celah energi dan indeks bias merupakan parameter intrinsik penting yang mencirikan sifat optik material, khususnya semikonduktor. Penelitian ini bertujuan untuk mengestimasi celah energi dan indeks bias semikonduktor seng oksida dari spektrum absorbsi ultraviolet-cahaya tampak. Seng oksida berbentuk batang diperoleh melalui proses presipitasi. Spektrum absorbsi seng oksida diamati menggunakan spektrofotometer ultraviolet-cahaya tampak. Analisis spektrum absorbsi ultraviolet-cahaya tampak memberikan celah energi seng oksida 2,8 eV. Indeks bias seng oksida yang dihitung menggunakan berbagai model teoritis memberikan nilai yang bervariasi dari 2,28 sampai 2,84. Seng oksida memiliki kemampuan menyerap cahaya ultraviolet sampai cahaya tampak (~ 450 nm) dan kemampuan tinggi untuk membiaskan cahaya, sehingga sesuai untuk aplikasi piranti optik dan optoelektronik yang bekerja dengan memanfaatkan radiasi ultraviolet dan cahaya tampak.
Full Text:
PDFReferences
Lamichhane, A., 2023. “Energy-Gap-Refractive Index Relations in Semiconductors—Using Wemple–DiDomenico Model to Unify Moss, Ravindra, and Herve–Vandamme Relationships. Solids 4: 316–326.
Gomaa, H.M., Yahia, I.S., & Zahran, H.Y., 2021. “Correlation between the static refractive index and the optical bandgap: Review and new empirical approach”. Physica B 620: 413246.
Tripathy, S.K., 2015. “Refractive indices of semiconductors from energy gaps”. Optical Materials 46: 240–246.
Ravindra, N.M., Ganapathy, P., & Choi, J., 2007. “Energy gap–refractive index relations in semiconductors – An overview”. Infrared Physics & Technology 50: 21–29.
Davis, K., Yarbrough, R., Froeschle, M., White, J., & Rathnayake, H., 2019. “Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth”. RSC Advanced 9:14638–14648.
Singh, S., Gade, J.V., Verma, DK., Elyor, B., & Jain, B., 2024. “Exploring ZnO nanoparticles: UV–visible analysis and different size estimation methods”. Optical Materials 152: 115422.
El Hamidia, A., Mezianea, K., El Hichoua, A., Jannaneb, T., Libab, A., El Haskouric, J., Amorósc, P., & Almaggoussia, A., 2018. “Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation”. Optik 158: 1139–1146.
Hernowo, A. & Nurhasanah, I., 2019. ”Kristalinitas dan ukuran nanopartikel zno yang dikalsinasi pa- da temperatur 100oC dan 200oC”. Berkala Fisika 22(4): 125-131.
Moss, T.S., 1985. “Relations between the Refractive Index and Energy Gap of Semiconductors”. Physica Status Solidi b 131: 415-427.
Herve, P., & Vandamme, L.K.J., 1994. “General relation between refractive index and energy gap in semiconductors”. Infrared Phys. 35: 609–615.
Reddy, R.R., & Ahammed, Y.N., .1995. “A study on the Moss relation”. Infrared Physics & Technology 36: 825-830.
Anani, M., Mathieu, C., Lebid, S., Amar, Y., Chama, Z., & Abid, H., 2008. “Model for calculating the refractive index of a III–V semiconductor”. Computational Materials Science 41: 570–575.
Kumar, V., & Singh, J.K., 2010. “Model for calculat-ing the refractive index of different materials”. Indian Journal of Pure & Applied Physics 48: 571-574.
Alamdari, S. Ghamsari, M.S., Lee, C., Han, W., Park, H.H., Tafreshi, M.J., Afarideh, H., & Ara, M.H.M., 2020.
“Preparation and Characteri-zation of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus”. Applied Science 10: 3620.
DOI: https://doi.org/10.26877/jitek.v11i1/Mei.22901
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JITEK (Jurnal Ilmiah Teknosains) by Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Universitas PGRI Semarang is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



